Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New therapeutic strategy against sleeping sickness

31.03.2017

A newly developed small molecule selectively kills the pathogen causing sleeping sickness and Chagas disease. Scientists from the Helmholtz Zentrum München, along with colleagues from the Technical University of Munich and the Ruhr University Bochum, report these findings in ‘Science’. The trick: The researchers could first determine the parasite's Achilles heel by using modern structural biology techniques and then develop an inhibitor with a perfect fit.

Trypanosomes get their name from the Greek trypano- (borer) and soma (body). The protozoan parasites are responsible for various diseases, particularly in Latin America and Africa. The best known example is probably sleeping sickness, which is caused by trypanosomes and transmitted by tsetse flies. In the end stage, patients suffer from uncontrollable sleep, which gave the sickness its name.*


Structure of the interface of PEX14 and PEX5 (back) including the structure of the inhibitor (front).

Source: Dr. Grzegorz Popowicz, Helmholtz Zentrum München

“Until now, there have been only a few medications against trypanosomes. These drugs have many undesirable side effects, and first cases of resistance are already spreading,” explains Prof. Dr. Michael Sattler, Director of the Institute of Structural Biology at the Helmholtz Zentrum München and Professor of Biomolecular NMR Spectroscopy at the Technical University of Munich.

Together with Dr. Grzegorz Popowicz (also Helmholtz Zentrum München) and the group headed by Prof. Dr. Ralf Erdmann at Ruhr University Bochum, the research team sought new possibilities to deactivate the pathogen. “We primarily concentrated on the so-called PEX proteins, which have been under debate as potential targets for pharmacological interference for some time,” says Sattler.

PEX proteins are the key

The PEX proteins play a crucial role in the function of the so-called glycosomes. These are small cell organelles that are important to maintain the parasite’s sugar metabolism. “The idea was to prevent the interaction between two essential proteins, PEX14 and PEX5, and consequently to disrupt the trypanosome metabolism so effectively that the parasites cannot survive,” explains Grzegorz Popowicz. At the Bavarian NMR Center, a joint research infrastructure of the Helmholtz Zentrum and TU München, the researchers therefore first used nuclear magnetic resonance (NMR) to investigate the structure of the two target proteins.

In the next step, the teams from Munich and Bochum used the thus determined spatial structure to optimize a substance that specifically binds to PEX14, thereby preventing the interaction with PEX5, which eventually kills the parasite. Grzegorz Popowicz describes it as, "We more or less first measured the lock and then developed the right key for it."

Possibly also relevant for other parasites

In the future, the researchers want to further advance these molecules using medicinal chemistry so that they can be tested in clinical studies and, eventually may be approved as drugs. They are also examining the extent to which the approach is suitable to kill other single-cell parasites that may depend on similar proteins. “One possibility would be to target the Leishmania parasite,” explains Popowicz. Future research in this direction will follow.

Further information

* A further example is the so-called Chagas disease, which is caused by Trypanosoma cruzi and transmitted by so-called kissing bugs (Triatominae). Around eight million people are estimated to be affected in North and South America. Symptoms include heart problems, as well as nerve damage in the digestive tract. In the current study, Trypanosoma cruzi was examined as a representative.

Background:
The research team used the NMR Fragment Screening Platform at Helmholtz Zentrum Munich, as part of the Bavarian NMR Center. First, they examined the spatial structure of the PEX proteins. A computational in silico screening procedure then identified the possible binding hits, and the team was able to validate these using NMR experiments in the further course of the project. Together with the colleagues from Bochum, one of the candidates was then optimized with the help of high-resolution crystal structures.

Original Publication:
Dawidowski, M. et al. (2017): Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. Science, DOI: 10.1126/science.aal1807

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute for Structural Biology (STB) investigates the spatial structures of biological macromolecules, their molecular interactions and dynamics using integrated structural biology by combining X-ray crystallography, NMR-spectroscopy and other methods. Researchers at STB also develop NMR spectroscopy methods for these studies. The goal is to unravel the structural and molecular mechanisms underlying biological function and their impairment in disease. The structural information is used for the rational design and development of small molecular inhibitors in combination with chemical biology approaches. http://www.helmholtz-muenchen.de/stb

Technical University of Munich (TUM) is one of Europe’s leading research universities, with more than 500 professors, around 10,000 academic and non-academic staff, and 40,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, com-bined with economic and social sciences. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany. http://www.tum.de/en/homepage

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Dr. Grzegorz Popowicz, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Structural Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187 3727, E-mail: grzegorz.popowicz@helmholtz-muenchen.de

Prof. Dr. Michael Sattler, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Structural Biology, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel. +49 89 3187 3800, E-mail: sattler@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Biology Chagas disease TUM Triatominae Trypanosoma cruzi kissing bugs parasites proteins

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>