Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique could make captured carbon more valuable

15.12.2017

Scientists developed an efficient process for turning captured carbon dioxide into syngas, a mixture of H2 and CO that can be used to make fuels and chemicals

Carbon capture could help the nation's coal plants reduce greenhouse gas emissions, yet economic challenges are part of the reason the technology isn't widely used today. That could change if power plants could turn captured carbon into a useable product.


The electrolysis setup that could allow efficient production of syngas from captured carbon.

Credit: Idaho National Laboratory

Scientists at the U.S. Department of Energy's Idaho National Laboratory have developed an efficient process for turning captured carbon dioxide into syngas, a mixture of H2 and CO that can be used to make fuels and chemicals. The team has published its results in Green Chemistry, a publication of the Royal Society of Chemistry .

Traditional approaches for reusing the carbon from CO2 involve a reduction step that requires high temperatures and pressures. At lower temperatures, the CO2 doesn't stay dissolved in water long enough to be useful. The process developed at INL addresses this challenge by using specialized liquid materials that make the CO2 more soluble and allow the carbon capture medium to be directly introduced into a cell for electrochemical conversion to syngas.

"For the first time it was demonstrated that syngas can be directly produced from captured CO2 - eliminating the requirement of downstream separations," the researchers wrote in the Green Chemistry paper.

The newly described process uses switchable polarity solvents (SPS), liquid materials that can shift polarity upon being exposed to a chemical agent. This property makes it possible to control what molecules will dissolve in the solvent.

In an electrochemical cell, water oxidation occurs on the anode side, releasing O2 gas and hydrogen ions that then migrate through a membrane to the cathode side. There, the hydrogen ions react with bicarbonate (HCO3-, the form in which CO2 is captured in the SPS), allowing the release of CO2 for electrochemical reduction and formation of syngas. Upon the release of CO2, the SPS switches polarity back to a water-insoluble form, allowing for the recovery and reutilization of the carbon capture media.

Luis Diaz Aldana, principal investigator on the experiment, and Tedd Lister, one of the researchers, conduct electrochemical research at INL. In 2015, while having lunch with colleagues Eric Dufek and Aaron Wilson, they hit on the idea of using switchable polarity solvents to turn CO2 into syngas.

The team received Laboratory Directed Research and Development funds in 2017. As promising as the idea was, in the first experiments, too much hydrogen and not enough syngas was being produced. The results improved when the team introduced a supporting electrolyte to increase the ionic conductivity. Adding potassium sulfate increased electrolyte conductivity by 47 percent, which allowed the efficient production of syngas.

When syngas can be produced from captured CO2 at significant current densities, it boosts the process chances for industrial application. Unlike other processes that require high temperatures and high pressures, the SPS-based process showed best results at 25 degrees C and 40 psi.

INL's team has filed a provisional patent and is discussing the approach with a Boston area company involved in electrochemical technology research and development, Lister said.

"It integrates two areas that have been on parallel tracks: carbon capture and sequestration (CCS) and CO2 utilization," said Diaz Aldana. "The problem with CCS has been its economic feasibility. If you can get some extra value out of the CO2 you are capturing, it's a different story."

###

Idaho National Laboratory is one of the U.S. Department of Energy's national laboratories. The laboratory performs work in each of DOE's strategic goal areas: energy, national security, science and environment. INL is the nation's leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at http://www.inl.gov. Follow @INL on Twitter or visit our Facebook page at http://www.facebook.com/IdahoNationalLaboratory.

Media Contact

Nicole Stricker
nicole.stricker@inl.gov
208-526-5955

 @INL

http://www.inl.gov 

Nicole Stricker | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>