Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique captures real-time diagnostic 3-D images


This technique uses Optical Projection Tomography, which is “similar to X-rays, but uses light,” explains UC3M researcher Jorge Ripoll, from the UC3M Department of Bioengineering and Aerospace Engineering.  With this technique, it is possible to use optical markers which are often used with transgenic animals.  One such marker is green fluorescent protein.  Thanks to this substance, one can observe the anatomy and functions of living organisms like flies or very small fish.

This research, recently published in the journal Scientific Reports, makes it possible to follow the development of living organisms up to three millimetres long with three-dimensional images.  These organisms, such as the zebrafish or the fruit fly, are frequently used in microscopic research.  The fruit fly (Drosophila melanogaster), for example, has a genetic code where the counterparts of more than 60% of the genes of human illnesses can be found.

New technique captures real-time diagnostic 3-D images

Ripoll says that the advance consists of being able to follow the development of these organisms, which normally appear opaque when viewed with a conventional microscope because they diffuse a lot of light when they approach adulthood. “It helps us visualize new stages,” says Ripoll. In this he way, he says, although “this technique cannot be used on living humans because our tissue is very opaque, it can be used to “take three-dimensional measurements of biopsies, which is very valuable to a surgeon,” as it would permit her to know if the surgery went as desired.

The way to put this technique into practice is simple, says Ripoll. “It consists of a source of light that stimulates the fluorescence and a camera that detects it” and has only one requirement: “that the sample rotates” as if X-rays were being taken of it.  Afterwards, with that information, “we must construct a three-dimensional image,” he explains.

The development of this technique has been possible thanks to the support, among others, of researchers from the Chinese Academy of Sciences.  These researchers “were responsible for creating the software so that the obtaining of images could be fast and effective,” he says.  Along with this, he comments that the technology on which the techniques his Chinese colleagues use are based has its origins in the development of video games.

Notes for editors

Participating in this research are Alicia Arranz, from the Swiss Federal Institute of Technology; Di Dong, from the Chinese Academy of Sciences; Shouping Zhu and Jie Tian, from the School of Life Sciences and Technology; Charalambos Savakis, from the BSRC Alexander Fleming and Jorge Ripoll, from the UC3M Department of Bioengineering and Aerospace Engineering.

Subtítulos en castellano, inglés y chinoEnglish, chinese and spanish subtitles

Javier Alonso Flores | AlphaGalileo

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>