Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance selectively blocks Alzheimer’s enzyme

26.02.2016

For the first time, an international team headed by scientists from the University of Zurich has found a way to specifically inhibit an enzyme that is partly responsible for Alzheimer’s disease. The method involves blocking only harmful processes, while other important functions remain intact. This paves the way for new drugs to be developed that don’t cause any severe side effects.

For decades, intensive research has been conducted on drugs all over the world to treat Alzheimer’s patients. Although major progress has been made in diagnostics (the disease can be detected increasingly early and accurately), the therapeutic options remain limited.


UZH Researchers have shown that it is possible to inhibit the Alzheimer’s disease process specifically without affecting the physiological processes using induced pluripotent stem cell-derived neurons. (Image: UZH)

Together with researchers in Switzerland, Germany and India, the team headed by Professor Lawrence Rajendran from the Systems and Cell Biology of Neurodegeneration at the Institute of Regenerative Medicine of the University of Zurich has now developed a targeted substance that blocks the pathogenic function of an enzyme in the cells without affecting its other vital functions.

Protein deposits in the brain are hallmarks of Alzheimer’s disease and partly responsible for the chronically progressive necrosis of the brain cells. Nowadays, these plaques can be detected at very early stages, long before the first symptoms of dementia appear. The protein clumps mainly consist of the β amyloid peptide (Aβ), a protein fragment that forms when two enzymes, β and γ secretase, cleave the amyloid precursor protein (APP) into three parts, including Aβ, which is toxic.

Blocking the harmful process without affecting any useful functions

If β or γ secretase is blocked, this also inhibits the production of any more harmful β amyloid peptide. Consequently, for many years biomedical research has concentrated on these two enzymes as therapeutic points of attack. To date, however, the results of clinical studies using substances that block γ secretase have been sobering. The problem is that the enzyme is also involved in other key cell processes. Inhibiting the enzymes in patients therefore triggered severe side effects, such as gastrointestinal hemorrhaging or skin cancer.

Thus, for a number of years researchers have also been focusing their efforts on β secretase. A large number of substances have been developed, including some highly promising ones that reduced the amount of Aβ in mouse models effectively. Nevertheless, according to cell biologist Rajendran, this presents the same challenge: “The current β secretase inhibitors don’t just block the enzyme function that drives the course of Alzheimer’s, but also physiologically important cell processes. Therefore, the substances currently being tested in clinical studies may also trigger nasty side effects – and thus fail.”

Promising substance to be studied on Alzheimer’s patients

To address this, the first author on the publication, Saoussen Ben Halima in the lab of Professor Rajendran, and her fellow researchers studied how β secretase might be inhibited selectively – in other words, the harmful property blocked without affecting any useful functions. In a series of experiments, the scientists were able to demonstrate that the Alzheimer’s protein APP is cleft by β secretase in endosomes, special areas of the cells that are separated by membrane envelopes, while the other vital proteins are processed in other areas of the cell. The researchers exploited this spatial separation of the protein processing within the cell.

“We managed to develop a substance that only inhibits β secretase in the endosomes where the β amyloid peptide forms. The specific efficacy of our inhibitor opens up a promising way to treat Alzheimer’s effectively in future, without causing the patients any serious side effects,” says Rajendran in summary. The researchers’ next goal is to hone their drug candidate so that it can initially be tested in mice and ultimately in clinical studies on Alzheimer’s patients.

Literature:
Saoussen Ben Halima, Sabyashachi Mishra, K. Muruga Poopathi Raja, Michael Willem, Antonio Baici, Kai Simons, Oliver Brüstle, Philipp Koch, Christian Haass, Amedeo Caflisch, and Lawrence Rajendran. Specific Inhibition of β-Secretase Processing of the Alzheimer’s Disease Amyloid Precursor Protein. Cell Reports. February 25, 2016. doi: 10.1016/j.celrep.2016.01.076

Alzheimer’s and dementia in figures

Around eight percent of over-65s and more than 30 percent of people who are younger than 90 suffer from Alzheimer’s or another form of dementia. According to the Swiss Alzheimer’s Association, around 120,000 people living in this country currently suffer from dementia – a figure that is set to rise to 200,000 patients by 2030 on account of demographic developments. Dementia is already the most common reason for needing care in old age in Switzerland and the third most common cause of death after cardiovascular disease and cancer.

Contact:
Prof. Lawrence Rajendran
Institute of Regenerative Medicine
Psychiatric University Hospital
University of Zurich
Phone: +41 44 634 88 60
E-mail: rajendran@bli.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/neuer-wirkstoff-blockiert-alzheimer-enzym-gezielt_en.html

Kurt Bodenmüller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>