Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance selectively blocks Alzheimer’s enzyme

26.02.2016

For the first time, an international team headed by scientists from the University of Zurich has found a way to specifically inhibit an enzyme that is partly responsible for Alzheimer’s disease. The method involves blocking only harmful processes, while other important functions remain intact. This paves the way for new drugs to be developed that don’t cause any severe side effects.

For decades, intensive research has been conducted on drugs all over the world to treat Alzheimer’s patients. Although major progress has been made in diagnostics (the disease can be detected increasingly early and accurately), the therapeutic options remain limited.


UZH Researchers have shown that it is possible to inhibit the Alzheimer’s disease process specifically without affecting the physiological processes using induced pluripotent stem cell-derived neurons. (Image: UZH)

Together with researchers in Switzerland, Germany and India, the team headed by Professor Lawrence Rajendran from the Systems and Cell Biology of Neurodegeneration at the Institute of Regenerative Medicine of the University of Zurich has now developed a targeted substance that blocks the pathogenic function of an enzyme in the cells without affecting its other vital functions.

Protein deposits in the brain are hallmarks of Alzheimer’s disease and partly responsible for the chronically progressive necrosis of the brain cells. Nowadays, these plaques can be detected at very early stages, long before the first symptoms of dementia appear. The protein clumps mainly consist of the β amyloid peptide (Aβ), a protein fragment that forms when two enzymes, β and γ secretase, cleave the amyloid precursor protein (APP) into three parts, including Aβ, which is toxic.

Blocking the harmful process without affecting any useful functions

If β or γ secretase is blocked, this also inhibits the production of any more harmful β amyloid peptide. Consequently, for many years biomedical research has concentrated on these two enzymes as therapeutic points of attack. To date, however, the results of clinical studies using substances that block γ secretase have been sobering. The problem is that the enzyme is also involved in other key cell processes. Inhibiting the enzymes in patients therefore triggered severe side effects, such as gastrointestinal hemorrhaging or skin cancer.

Thus, for a number of years researchers have also been focusing their efforts on β secretase. A large number of substances have been developed, including some highly promising ones that reduced the amount of Aβ in mouse models effectively. Nevertheless, according to cell biologist Rajendran, this presents the same challenge: “The current β secretase inhibitors don’t just block the enzyme function that drives the course of Alzheimer’s, but also physiologically important cell processes. Therefore, the substances currently being tested in clinical studies may also trigger nasty side effects – and thus fail.”

Promising substance to be studied on Alzheimer’s patients

To address this, the first author on the publication, Saoussen Ben Halima in the lab of Professor Rajendran, and her fellow researchers studied how β secretase might be inhibited selectively – in other words, the harmful property blocked without affecting any useful functions. In a series of experiments, the scientists were able to demonstrate that the Alzheimer’s protein APP is cleft by β secretase in endosomes, special areas of the cells that are separated by membrane envelopes, while the other vital proteins are processed in other areas of the cell. The researchers exploited this spatial separation of the protein processing within the cell.

“We managed to develop a substance that only inhibits β secretase in the endosomes where the β amyloid peptide forms. The specific efficacy of our inhibitor opens up a promising way to treat Alzheimer’s effectively in future, without causing the patients any serious side effects,” says Rajendran in summary. The researchers’ next goal is to hone their drug candidate so that it can initially be tested in mice and ultimately in clinical studies on Alzheimer’s patients.

Literature:
Saoussen Ben Halima, Sabyashachi Mishra, K. Muruga Poopathi Raja, Michael Willem, Antonio Baici, Kai Simons, Oliver Brüstle, Philipp Koch, Christian Haass, Amedeo Caflisch, and Lawrence Rajendran. Specific Inhibition of β-Secretase Processing of the Alzheimer’s Disease Amyloid Precursor Protein. Cell Reports. February 25, 2016. doi: 10.1016/j.celrep.2016.01.076

Alzheimer’s and dementia in figures

Around eight percent of over-65s and more than 30 percent of people who are younger than 90 suffer from Alzheimer’s or another form of dementia. According to the Swiss Alzheimer’s Association, around 120,000 people living in this country currently suffer from dementia – a figure that is set to rise to 200,000 patients by 2030 on account of demographic developments. Dementia is already the most common reason for needing care in old age in Switzerland and the third most common cause of death after cardiovascular disease and cancer.

Contact:
Prof. Lawrence Rajendran
Institute of Regenerative Medicine
Psychiatric University Hospital
University of Zurich
Phone: +41 44 634 88 60
E-mail: rajendran@bli.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/neuer-wirkstoff-blockiert-alzheimer-enzym-gezielt_en.html

Kurt Bodenmüller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>