Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New substance selectively blocks Alzheimer’s enzyme

26.02.2016

For the first time, an international team headed by scientists from the University of Zurich has found a way to specifically inhibit an enzyme that is partly responsible for Alzheimer’s disease. The method involves blocking only harmful processes, while other important functions remain intact. This paves the way for new drugs to be developed that don’t cause any severe side effects.

For decades, intensive research has been conducted on drugs all over the world to treat Alzheimer’s patients. Although major progress has been made in diagnostics (the disease can be detected increasingly early and accurately), the therapeutic options remain limited.


UZH Researchers have shown that it is possible to inhibit the Alzheimer’s disease process specifically without affecting the physiological processes using induced pluripotent stem cell-derived neurons. (Image: UZH)

Together with researchers in Switzerland, Germany and India, the team headed by Professor Lawrence Rajendran from the Systems and Cell Biology of Neurodegeneration at the Institute of Regenerative Medicine of the University of Zurich has now developed a targeted substance that blocks the pathogenic function of an enzyme in the cells without affecting its other vital functions.

Protein deposits in the brain are hallmarks of Alzheimer’s disease and partly responsible for the chronically progressive necrosis of the brain cells. Nowadays, these plaques can be detected at very early stages, long before the first symptoms of dementia appear. The protein clumps mainly consist of the β amyloid peptide (Aβ), a protein fragment that forms when two enzymes, β and γ secretase, cleave the amyloid precursor protein (APP) into three parts, including Aβ, which is toxic.

Blocking the harmful process without affecting any useful functions

If β or γ secretase is blocked, this also inhibits the production of any more harmful β amyloid peptide. Consequently, for many years biomedical research has concentrated on these two enzymes as therapeutic points of attack. To date, however, the results of clinical studies using substances that block γ secretase have been sobering. The problem is that the enzyme is also involved in other key cell processes. Inhibiting the enzymes in patients therefore triggered severe side effects, such as gastrointestinal hemorrhaging or skin cancer.

Thus, for a number of years researchers have also been focusing their efforts on β secretase. A large number of substances have been developed, including some highly promising ones that reduced the amount of Aβ in mouse models effectively. Nevertheless, according to cell biologist Rajendran, this presents the same challenge: “The current β secretase inhibitors don’t just block the enzyme function that drives the course of Alzheimer’s, but also physiologically important cell processes. Therefore, the substances currently being tested in clinical studies may also trigger nasty side effects – and thus fail.”

Promising substance to be studied on Alzheimer’s patients

To address this, the first author on the publication, Saoussen Ben Halima in the lab of Professor Rajendran, and her fellow researchers studied how β secretase might be inhibited selectively – in other words, the harmful property blocked without affecting any useful functions. In a series of experiments, the scientists were able to demonstrate that the Alzheimer’s protein APP is cleft by β secretase in endosomes, special areas of the cells that are separated by membrane envelopes, while the other vital proteins are processed in other areas of the cell. The researchers exploited this spatial separation of the protein processing within the cell.

“We managed to develop a substance that only inhibits β secretase in the endosomes where the β amyloid peptide forms. The specific efficacy of our inhibitor opens up a promising way to treat Alzheimer’s effectively in future, without causing the patients any serious side effects,” says Rajendran in summary. The researchers’ next goal is to hone their drug candidate so that it can initially be tested in mice and ultimately in clinical studies on Alzheimer’s patients.

Literature:
Saoussen Ben Halima, Sabyashachi Mishra, K. Muruga Poopathi Raja, Michael Willem, Antonio Baici, Kai Simons, Oliver Brüstle, Philipp Koch, Christian Haass, Amedeo Caflisch, and Lawrence Rajendran. Specific Inhibition of β-Secretase Processing of the Alzheimer’s Disease Amyloid Precursor Protein. Cell Reports. February 25, 2016. doi: 10.1016/j.celrep.2016.01.076

Alzheimer’s and dementia in figures

Around eight percent of over-65s and more than 30 percent of people who are younger than 90 suffer from Alzheimer’s or another form of dementia. According to the Swiss Alzheimer’s Association, around 120,000 people living in this country currently suffer from dementia – a figure that is set to rise to 200,000 patients by 2030 on account of demographic developments. Dementia is already the most common reason for needing care in old age in Switzerland and the third most common cause of death after cardiovascular disease and cancer.

Contact:
Prof. Lawrence Rajendran
Institute of Regenerative Medicine
Psychiatric University Hospital
University of Zurich
Phone: +41 44 634 88 60
E-mail: rajendran@bli.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/neuer-wirkstoff-blockiert-alzheimer-enzym-gezielt_en.html

Kurt Bodenmüller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>