Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study: Gut Bacteria cooperate when life gets tough

03.06.2015

Researchers of the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have discovered with the help of computer models how gut bacteria respond to changes in their environment – such as a decrease in oxygen levels or nutrient availability.

Microorganisms that normally compete or overthrow one another can switch to a cooperative lifestyle when their living conditions change: They even start producing substances to make life easier for the other species, helping them to survive. The entire microbial community then stabilises – and together adapts successfully to the new situation.

The researchers working with Prof. Dr. Ines Thiele, head of the LCSB Group “Molecular Systems Physiology” published their results in the journal “Applied and Environmental Microbiology” (DOI: 10.1128/AEM.00101-15).

The human gut is home to thousands of bacterial species, most of which have never been described in science. This ecosystem is a complex living community: The microorganisms live side-by-side, compete for nutrients, overthrow one another or even benefit off each other.

It is the aim of Almut Heinken, research associate in Ines Thiele’s workgroup, to understand these interactions more completely: “For my thesis, I worked with data from literature and modelled on the computer how certain bacterial species respond to one another when the living conditions in their environment change,” the scientist says. “Such models are a common method for making better predictions about the interactions of bacteria. We developed the method further and applied it for the first time to gut bacteria. With eleven species, we were able to calculate how they behave pairwise in the presence of human small intestinal cells.”

Almut Heinken discovered some surprising types of behaviour in these studies: “Bacteria that are otherwise very dominant and overthrow other species suddenly enter a symbiosis with those same species if, for example, the oxygen content in the environment drops. They emit substances that make it easier for otherwise outcompeted species to survive. And they, too, receive substances they wouldn’t get enough of under the unfavourable living conditions.” Heinken has calculated such symbiotic behaviour for the bacterial species Lactobacillus plantarum, for example.

This turnaround in metabolism is vital for the bacterial community to continue functioning within the different sections of the gut: For example, the oxygen content varies in different places along the small intestine. There is more oxygen on the walls than in the centre, and more at the start of the small intestine than at its end. “By the bacteria mutually supporting one another when they find themselves in a low-oxygen environment, the bacterial community remains functional as a whole – and so the digestion as well,” Almut Heinken explains. The nutrient supply and the presence of sloughed intestinal cells also undergo great spatial variance, and have an influence on the symbiotic behaviour of the bacteria.

The LCSB researchers are interested above all in the importance of these bacterial interactions in relation to diseases, as Ines Thiele explains: “We know that diet and digestion can have an influence on the onset of diseases. This relates not only to the gastrointestinal tract, but also to other areas, such as the nervous system and its diseases, such as Parkinson’s disease.”

The scientists’ long-term goal is therefore to understand the ecosystem of the gut in minutest detail. Accordingly, they are continually adding more bacterial species to their computer models. “If we manage to correlate certain responses of the bacterial community with the outbreak of diseases, then we will gain a powerful lever,” Thiele says: “We would thereby create the opportunity to influence the disease preventatively or therapeutically by diet or by tweaking the gut flora using probiotics.”

Contact: sabine.mosch@uni.lu; T. + 352 46 66 44 6423

Weitere Informationen:

http://www.lcsb.lu - Homepage of the Luxembourg Centre for Systems Biomedicine
http://orbilu.uni.lu/handle/10993/20710 - Link to the scientific publication

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: bacterial bacterial species diseases intestinal oxygen content substances symbiotic

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>