Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study: Gut Bacteria cooperate when life gets tough

03.06.2015

Researchers of the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have discovered with the help of computer models how gut bacteria respond to changes in their environment – such as a decrease in oxygen levels or nutrient availability.

Microorganisms that normally compete or overthrow one another can switch to a cooperative lifestyle when their living conditions change: They even start producing substances to make life easier for the other species, helping them to survive. The entire microbial community then stabilises – and together adapts successfully to the new situation.

The researchers working with Prof. Dr. Ines Thiele, head of the LCSB Group “Molecular Systems Physiology” published their results in the journal “Applied and Environmental Microbiology” (DOI: 10.1128/AEM.00101-15).

The human gut is home to thousands of bacterial species, most of which have never been described in science. This ecosystem is a complex living community: The microorganisms live side-by-side, compete for nutrients, overthrow one another or even benefit off each other.

It is the aim of Almut Heinken, research associate in Ines Thiele’s workgroup, to understand these interactions more completely: “For my thesis, I worked with data from literature and modelled on the computer how certain bacterial species respond to one another when the living conditions in their environment change,” the scientist says. “Such models are a common method for making better predictions about the interactions of bacteria. We developed the method further and applied it for the first time to gut bacteria. With eleven species, we were able to calculate how they behave pairwise in the presence of human small intestinal cells.”

Almut Heinken discovered some surprising types of behaviour in these studies: “Bacteria that are otherwise very dominant and overthrow other species suddenly enter a symbiosis with those same species if, for example, the oxygen content in the environment drops. They emit substances that make it easier for otherwise outcompeted species to survive. And they, too, receive substances they wouldn’t get enough of under the unfavourable living conditions.” Heinken has calculated such symbiotic behaviour for the bacterial species Lactobacillus plantarum, for example.

This turnaround in metabolism is vital for the bacterial community to continue functioning within the different sections of the gut: For example, the oxygen content varies in different places along the small intestine. There is more oxygen on the walls than in the centre, and more at the start of the small intestine than at its end. “By the bacteria mutually supporting one another when they find themselves in a low-oxygen environment, the bacterial community remains functional as a whole – and so the digestion as well,” Almut Heinken explains. The nutrient supply and the presence of sloughed intestinal cells also undergo great spatial variance, and have an influence on the symbiotic behaviour of the bacteria.

The LCSB researchers are interested above all in the importance of these bacterial interactions in relation to diseases, as Ines Thiele explains: “We know that diet and digestion can have an influence on the onset of diseases. This relates not only to the gastrointestinal tract, but also to other areas, such as the nervous system and its diseases, such as Parkinson’s disease.”

The scientists’ long-term goal is therefore to understand the ecosystem of the gut in minutest detail. Accordingly, they are continually adding more bacterial species to their computer models. “If we manage to correlate certain responses of the bacterial community with the outbreak of diseases, then we will gain a powerful lever,” Thiele says: “We would thereby create the opportunity to influence the disease preventatively or therapeutically by diet or by tweaking the gut flora using probiotics.”

Contact: sabine.mosch@uni.lu; T. + 352 46 66 44 6423

Weitere Informationen:

http://www.lcsb.lu - Homepage of the Luxembourg Centre for Systems Biomedicine
http://orbilu.uni.lu/handle/10993/20710 - Link to the scientific publication

Britta Schlüter | idw - Informationsdienst Wissenschaft

Further reports about: bacterial bacterial species diseases intestinal oxygen content substances symbiotic

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>