Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study: Algae virus can jump to mammalian cells

22.10.2015

Verdict still out on whether virus causes slower cognition

New research led by the University of Nebraska-Lincoln has provided the first direct evidence that an algae-infecting virus can invade and potentially replicate within some mammalian cells.


This optical image shows a cell (in blue) with the ATCV-1 viral particles.

Credit: University Communications/University of Nebraska-Lincoln

Known as Acanthocystis turfacea chlorella virus 1, or ATCV-1, the pathogen is among a class of chloroviruses long believed to take up residence only in green algae. That thinking changed with a 2014 study from Johns Hopkins University and UNL that found gene sequences resembling those of ATCV-1 in throat swabs of human participants.

The new study, published in the Journal of Virology, introduced ATCV-1 to macrophage cells that serve critical functions in the immune responses of mice, humans and other mammals. By tagging the virus with fluorescent dye and assembling three-dimensional images of mouse cells, the authors determined that ATCV-1 successfully infiltrated them.

The authors also measured a three-fold increase in ATCV-1 within 24 hours of introducing the virus. The relatively modest spike nevertheless suggests that ATCV-1 can replicate within the macrophage cells, according to co-author David Dunigan.

Though a few studies have documented viruses jumping from one biological kingdom to another, chloroviruses were previously thought to have a limited "host range" that stopped well short of the animal kingdom, Dunigan said.

"A few years ago, no one I know would have made a prediction like this," said Dunigan, research professor of plant pathology and member of the Nebraska Center for Virology. "You probably would've been laughed out of the room. But we are now in the middle of something that is so very interesting."

The macrophage cells underwent multiple changes characteristic of those breached by a virus, Dunigan said. These changes eventually included a form of programmed death that virologists consider an innate "scorched earth" defense against the spread of viruses, which require living cells to survive and replicate.

Before dying, the cells exhibited multiple signs of stress that tentatively support links to mild cognitive impairments first reported in the 2014 paper, available at http://go.unl.edu/rfuo. The new study measured a post-viral rise in interleukin 6, a cellular protein that previous research has linked with diminished spatial learning and certain neurological diseases. The authors also reported an increase in nitric oxide, an important signaling molecule that has been associated with memory impairments when produced in excess.

The 2014 investigation, which was initially designed to test the cognitive functioning of human participants, found that those with the ATCV-1 DNA performed slightly worse on measures of visual processing and visual motor speed. Mice inoculated with the virus showed similar deficits in memory and attention while navigating mazes. The 2014 paper further suggested that ATCV-1 altered the expression of more than 1,000 genes in the rodent hippocampus, an area of the brain tied to memory and spatial navigation.

The new study's authors are continuing their collaboration with Johns Hopkins in the hope of ultimately confirming whether and how the virus contributes to any cognitive deficits suggested by the initial studies.

"It is still unclear whether the factors induced by the cell-based virus challenge could also be induced in the whole animal, and whether the induced factors cause cognitive impairments in the animal or the human," said co-author Tom Petro, professor of microbiology and immunology at the University of Nebraska Medical Center.

Dunigan said he and his colleagues are also searching for other cellular responses to ATCV-1 while investigating how these responses might drive systemic changes in mice.

"These are pretty big, unexplored questions," Dunigan said. "There are so many very basic virological questions that we can and want to ask."

###

The study was co-authored by James Van Etten, a William Allington Distinguished Professor of plant pathology; Irina Agarkova, research assistant professor of plant pathology; You Zhou, research professor at the Morrison Microscopy Core Research Facility of the Center for Biotechnology; and Robert Yolken, director of the Stanley Neurovirology Laboratory at Johns Hopkins University.

The team's research was supported in part by the National Center for Research Resources, part of the National Institutes of Health, under grant number P30-RR031151.

Media Contact

David Dunigan
ddunigan2@unl.edu
402-472-5776

 @UNLNews

http://www.unl.edu 

David Dunigan | EurekAlert!

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>