Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy for fighting antibiotic-resistant pathogens

16.10.2015

Daily switching of antibiotics inhibits the evolution of resistance

Recent research by a group of scientists at Kiel University has shown that there are possible ways to prolong the effectiveness of the antibiotics that are currently available.


Pseudomonas aeruginosa colonies grow in a petri dish, Pyocyanin makes them appear in a light green colour.

Photo: Christian Urban, Kiel University.

Rapid evolution of resistance to antibiotics represents an increasingly dramatic risk for public health. In fewer than 20 years from now, antibiotic-resistant pathogens could become one of the most frequent causes of unnatural deaths.

Medicine is therefore facing the particular challenge of continuing to ensure the successful treatment of bacterial infections - despite an ever-shrinking spectrum of effective antibiotics. Recent research by a group of scientists at Kiel University has now shown that there are possible ways to prolong the effectiveness of the antibiotics that are currently available.

The team, headed by Professor Hinrich Schulenburg and Dr. Gunther Jansen from the Evolutionary Ecology and Genetics research group at Kiel University, investigated the effects of daily switching of two pairs of antibiotics that are common in clinical practice against Pseudomonas aeruginosa. This bacterium is a common disease agent, often multi-resistant and can cause life-threatening infections in immunodeficient or chronically ill patients.

For the current study, evolution experiments were carried out under controlled laboratory conditions. In doing so, a series of quick switches between the two antibiotics, known as antibiotic cycling, proved highly effective against the pathogen. At the same time, it also inhibited the bacteria's ability to evolve resistance against the drugs. The research group has now published these findings in the current issue of the journal Evolutionary Applications.

Although antibiotic cycling is already widely used in regular medical treatment, antibiotics are usually only switched after several weeks. These time intervals are likely too long. Bacteria are capable of evolving resistance within just a few days - sometimes even within hours. In the evolution experiments, therefore, the scientists now switched clinically relevant antibiotics every 12 hours and compared this treatment to corresponding monotherapies, where a single antibiotic was administered continually.

Quick switching proved particularly effective. "We were surprised that we were able to eliminate bacterial populations in our experiments, despite using non-lethal doses of antibiotics. A temporally complex environment, such as the one created by quickly switching between various antibiotics, seems to overtax the bacterium's ability to evolve any kind of resistance mechanism", says Schulenburg, member of the research focus "Kiel Life Science".

These recent findings by the research group in Kiel therefore indicate a promising alternative approach to conventional use of antibiotics. Their approach has a different rationale and may help to combat the increasingly menacing antibiotics crisis. The focus here is on evolution, and therefore the ability of pathogens to adapt to the antibiotics. "Developing new antibiotic drugs will not be able to keep up with the speed at which pathogens evolve to resist new treatments. Our approach thus aims to apply existing substances more usefully", says Roderich Römhild, lead author of the study.

Further research projects are currently in preparation - paying particular consideration to everyday clinical situations. The available results are part of the Evolutionary Ecology and Genetics research group's ongoing research on pathogen adaptation, which is a central topic within the new research focus "Kiel Life Science" at Kiel University.

Original publication:
Roderich Römhild, Camilo Barbosa, Robert E. Beardmore, Gunther Jansen and Hinrich Schulenburg (2015): Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa. Evolutionary Applications
Link: http://dx.doi.org/10.1111/eva.12330

Contact:
Prof. Hinrich Schulenburg
Department of Evolutionary Ecology and Genetics,
Zoological Institute, Kiel University
Tel: +49 (0) 431-880-4141
Email: hschulenburg@zoologie.uni-kiel.de

More information:
Department of Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel
http://www.uni-kiel.de/zoologie/evoecogen

Research focus "Kiel Life Science“, Kiel University
http://www.kls.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>