Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy for fighting antibiotic-resistant pathogens

16.10.2015

Daily switching of antibiotics inhibits the evolution of resistance

Recent research by a group of scientists at Kiel University has shown that there are possible ways to prolong the effectiveness of the antibiotics that are currently available.


Pseudomonas aeruginosa colonies grow in a petri dish, Pyocyanin makes them appear in a light green colour.

Photo: Christian Urban, Kiel University.

Rapid evolution of resistance to antibiotics represents an increasingly dramatic risk for public health. In fewer than 20 years from now, antibiotic-resistant pathogens could become one of the most frequent causes of unnatural deaths.

Medicine is therefore facing the particular challenge of continuing to ensure the successful treatment of bacterial infections - despite an ever-shrinking spectrum of effective antibiotics. Recent research by a group of scientists at Kiel University has now shown that there are possible ways to prolong the effectiveness of the antibiotics that are currently available.

The team, headed by Professor Hinrich Schulenburg and Dr. Gunther Jansen from the Evolutionary Ecology and Genetics research group at Kiel University, investigated the effects of daily switching of two pairs of antibiotics that are common in clinical practice against Pseudomonas aeruginosa. This bacterium is a common disease agent, often multi-resistant and can cause life-threatening infections in immunodeficient or chronically ill patients.

For the current study, evolution experiments were carried out under controlled laboratory conditions. In doing so, a series of quick switches between the two antibiotics, known as antibiotic cycling, proved highly effective against the pathogen. At the same time, it also inhibited the bacteria's ability to evolve resistance against the drugs. The research group has now published these findings in the current issue of the journal Evolutionary Applications.

Although antibiotic cycling is already widely used in regular medical treatment, antibiotics are usually only switched after several weeks. These time intervals are likely too long. Bacteria are capable of evolving resistance within just a few days - sometimes even within hours. In the evolution experiments, therefore, the scientists now switched clinically relevant antibiotics every 12 hours and compared this treatment to corresponding monotherapies, where a single antibiotic was administered continually.

Quick switching proved particularly effective. "We were surprised that we were able to eliminate bacterial populations in our experiments, despite using non-lethal doses of antibiotics. A temporally complex environment, such as the one created by quickly switching between various antibiotics, seems to overtax the bacterium's ability to evolve any kind of resistance mechanism", says Schulenburg, member of the research focus "Kiel Life Science".

These recent findings by the research group in Kiel therefore indicate a promising alternative approach to conventional use of antibiotics. Their approach has a different rationale and may help to combat the increasingly menacing antibiotics crisis. The focus here is on evolution, and therefore the ability of pathogens to adapt to the antibiotics. "Developing new antibiotic drugs will not be able to keep up with the speed at which pathogens evolve to resist new treatments. Our approach thus aims to apply existing substances more usefully", says Roderich Römhild, lead author of the study.

Further research projects are currently in preparation - paying particular consideration to everyday clinical situations. The available results are part of the Evolutionary Ecology and Genetics research group's ongoing research on pathogen adaptation, which is a central topic within the new research focus "Kiel Life Science" at Kiel University.

Original publication:
Roderich Römhild, Camilo Barbosa, Robert E. Beardmore, Gunther Jansen and Hinrich Schulenburg (2015): Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa. Evolutionary Applications
Link: http://dx.doi.org/10.1111/eva.12330

Contact:
Prof. Hinrich Schulenburg
Department of Evolutionary Ecology and Genetics,
Zoological Institute, Kiel University
Tel: +49 (0) 431-880-4141
Email: hschulenburg@zoologie.uni-kiel.de

More information:
Department of Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel
http://www.uni-kiel.de/zoologie/evoecogen

Research focus "Kiel Life Science“, Kiel University
http://www.kls.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>