Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New species discovered beneath ocean crust

15.01.2015

Microbes may play important role in the global carbon cycle

Two miles below the surface of the ocean, researchers have discovered new microbes that "breathe" sulfate.


This news graphic shows the innovative technology that allowed the scientists to collect samples of water from an aquifer two miles below the ocean without contaminating the samples with ocean water.

Credit: Courtesy of USC

The microbes, which have yet to be classified and named, exist in massive undersea aquifers -- networks of channels in porous rock beneath the ocean where water continually churns. About one-third of the Earth's biomass is thought to exist in this largely uncharted environment.

"It was surprising to find new bugs, but when we go to warmer, relatively old and isolated fluids, we find a unique microbial community," said Alberto Robador, postdoctoral researcher at the USC Dornsife College of Letters, Arts and Sciences and lead author of a paper on the new findings that will be published by the open-access journal Frontiers in Microbiology on Jan. 14.

Sulfate is a compound of sulfur and oxygen that occurs naturally in seawater. It is used commercially in everything from car batteries to bath salts and can be aerosolized by the burning of fossil fuels, increasing the acidity of the atmosphere.

Microbes that breathe sulfate -- that is, gain energy by reacting sulfate with organic (carbon-containing) compounds -- are thought to be some of the oldest types of organisms on Earth. Other species of sulfate-breathing microbes can be found in marshes and hydrothermal vents.

Microbes beneath the ocean's crust, however, are incredibly tricky to sample.

Researchers from USC and the University of Hawaii took their samples from the Juan de Fuca Ridge (off the coast of Washington state), where previous teams had placed underwater laboratories, drilled into the ocean floor. To place the labs, they lowered a drill through two miles of ocean and bored through several hundred feet of ocean sediment and into the rock where the aquifer flows.

"Trying to take a sample of aquifer water without contaminating it with regular ocean water presented a huge challenge," said Jan Amend, professor at USC Dornsife and director of the Center for Dark Energy Biosphere Investigations (C-DEBI), which helped fund the research.

To solve this problem, C-DEBI created Circulation Obviation Retrofit Kit (CORK) observatories. The moniker was basically dreamed up to fit the term "CORK" because these devices create a seal at the seafloor, like a cork in a bottle, allowing scientists to deploy instruments and sampling devices down a borehole while keeping ocean water out.

Samples were then shuttled to the surface by remote-controlled undersea vehicles or "elevators" -- balloons that drop ballast and float samples gently up to the waiting scientists.

Like the microbes on the forest floor that break down leaf litter and dead organisms, the microbes in the ocean also break down organic -- that is, carbon-based -- material like dead fish and algae. Unlike their counterparts, however, the microbes beneath the ocean crust often lack the oxygen that is used on land to effect the necessary chemical reaction.

Instead, these microbes can use sulfate to break down carbon from decaying biological material that sinks to the sea bottom and makes its way into the crustal aquifer, producing carbon dioxide.

Learning how these new microbes function will be important to getting a more accurate, quantified understanding of the overall global carbon cycle -- a natural cycling of carbon through the environment in which it is consumed by plants, exhaled by animals and enters the ocean via the atmosphere. This cycle is currently being disrupted by man-made carbon dioxide emissions.

"This is the first direct account of microbial activity in these type of environments," Robador said, "and shows the potential of these organisms to respire organic carbon."

The research was funded by the National Science Foundation (C-DEBI award OCE0939564, MCB0604014, 1207880 and 1207874) and the NASA Astrobiology Institute.

The full study can be found online here: http://journal.frontiersin.org/Journal/10.3389/fmicb.2014.00748/full

Image: C-DEBI researchers deply the ROV Jason to collect samples. Alberto Robado / USC

Photos and an infographic showing how CORKs work are available in high resolution at https://www.dropbox.com/sh/w9n1tnquwdfgnmp/AAAm3H_eUPa7eOu3wjgEmlYMa?dl=0.

The credit for the infographic is "Courtesy of USC" and the credit for the photos is "Courtesy of Alberto Robado / USC."

Watch a video about C-DEBI's work with CORKs here: https://www.youtube.com/watch?v=8sSN1psBeXk

Robert Perkins | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>