Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New source of greenhouse gases discovered

08.07.2015

Lichens, mosses and cyanobacteria produce large amounts of nitrous oxide (laughing gas)

Inconspicuous creatures surprise with a property that is important for our climate: Lichens, mosses and cyanobacteria release large quantities of the greenhouse gas nitrous oxide (N2O), also known as laughing gas, and low quantities of methane (CH4) into the atmosphere.


Lichens, mosses and cyanobacteria absorb large quantities of carbon dioxide (CO2) and partially nitrogen (N2) from the atmosphere and emit nitrous oxide (N2O) and small quantities of methane (CH4).

Dr. Karl-Heinz Kaupe, Graphics: MPI for Chemistry

Latest investigations showed that cryptogamic covers, the scientific name for the surface growth of lichens, mosses, cyanobacteria and other micro organisms, are responsible for four to nine percent of N2O from natural sources.

This was discovered by the scientists of the Gießen and Heidelberg universities and the Max Planck Institute for Chemistry in extensive laboratory tests. As the amount of emitted nitrous oxide increased at higher temperatures, the group’s discover is gaining importance with regard to global warming.

“We wanted to find out two things: Firstly, we wanted to know whether cryptogamic covers can emit N2O and CH4 at all. And secondly, what impact do climatic conditions have on the emission values,” says Katharina Lenhart, Visiting Professor at the Institute for Plant Ecology at the Justus-Liebig University in Gießen when explaining the objectives of the study.

To do this, the scientists examined 68 samples of different lichens and mosses from various climate regions. They recorded the greenhouse gas emissions of the organisms under different temperatures, water contents, light conditions and nitrogen fertilizer emissions, to determine the impact of environmental conditions on the release of greenhouse gases.

“The methane emissions of cryptogamic covers were negligible on a global scale. However, the high release rates of nitrous oxide were remarkable,” says Bettina Weber, Group Leader at the Max Planck Institute for Chemistry.

“Generally, we could demonstrate that N2O and CH4 emissions strongly increase from temperatures above 20 degrees Celsius,” she adds. Consequently, the scientists suspect that methane and nitrous oxide emissions from lichens, cyanobacteria and mosses could increase in the course of global warming.

This could be of greater significance especially in temperate latitudes, where cryptogamic covers represent one of the main sources for nitrous oxide emissions. In some tundra, steppe and desert regions, they are probably even the exclusive source.

In the next step the scientists will check the laboratory findings in field studies and include additional organisms in their research.

The researchers developed the idea of the current study at the Max Planck Institute, as some years ago, they had found out that cryptogamic covers absorb large quantities of carbon dioxide and nitrogen from the atmosphere. Lichens, mosses and cyanobacteria bind about as much carbon dioxide as the burning of biomass or fossil fuel releases annually. Additionally, Frank Keppler’s team at the Institute for Geo Sciences at the University of Heidelberg had discovered that plants and fungi can produce methane. Previously, it was assumed that biogenic methane was exclusively produced during the decomposition of organic material under exclusion of oxygen.

Original publication:
Katharina Lenhart, Bettina Weber, Wolfgang Elbert, Jörg Steinkamp, Tim Clough, Paul Crutzen, Ulrich Pöschl and Frank Keppler
Nitrous oxide and methane emissions from cryptogamic covers
Global Change Biology (2015), doi: 10.1111/gcb.12995

Contact:
PD Dr. Bettina Weber
Max Planck Institute for Chemistry
Department of Multiphase Chemistry
55128 Mainz, Germany
E-mail: b.weber@mpic.de

Dr. Katharina Lenhart
Visiting Professor for Geo Ecology and Modeling
Justus-Liebig University Gießen
Interdisciplinary Research Center (IFZ)
Institute of Plant Ecology
35392 Gießen, Germany
E-mail: Katharina.Lenhart@bot2.bio.uni-giessen.de

Prof. Dr. Frank Keppler
Research Group Biogeochemistry
Institute of Geo Sciences
University of Heidelberg
Im Neuenheimer Feld 234-236
69120 Heidelberg, Germany
E-mail: frank.keppler@geow.uni-heidelberg.de

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>