Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New source of greenhouse gases discovered


Lichens, mosses and cyanobacteria produce large amounts of nitrous oxide (laughing gas)

Inconspicuous creatures surprise with a property that is important for our climate: Lichens, mosses and cyanobacteria release large quantities of the greenhouse gas nitrous oxide (N2O), also known as laughing gas, and low quantities of methane (CH4) into the atmosphere.

Lichens, mosses and cyanobacteria absorb large quantities of carbon dioxide (CO2) and partially nitrogen (N2) from the atmosphere and emit nitrous oxide (N2O) and small quantities of methane (CH4).

Dr. Karl-Heinz Kaupe, Graphics: MPI for Chemistry

Latest investigations showed that cryptogamic covers, the scientific name for the surface growth of lichens, mosses, cyanobacteria and other micro organisms, are responsible for four to nine percent of N2O from natural sources.

This was discovered by the scientists of the Gießen and Heidelberg universities and the Max Planck Institute for Chemistry in extensive laboratory tests. As the amount of emitted nitrous oxide increased at higher temperatures, the group’s discover is gaining importance with regard to global warming.

“We wanted to find out two things: Firstly, we wanted to know whether cryptogamic covers can emit N2O and CH4 at all. And secondly, what impact do climatic conditions have on the emission values,” says Katharina Lenhart, Visiting Professor at the Institute for Plant Ecology at the Justus-Liebig University in Gießen when explaining the objectives of the study.

To do this, the scientists examined 68 samples of different lichens and mosses from various climate regions. They recorded the greenhouse gas emissions of the organisms under different temperatures, water contents, light conditions and nitrogen fertilizer emissions, to determine the impact of environmental conditions on the release of greenhouse gases.

“The methane emissions of cryptogamic covers were negligible on a global scale. However, the high release rates of nitrous oxide were remarkable,” says Bettina Weber, Group Leader at the Max Planck Institute for Chemistry.

“Generally, we could demonstrate that N2O and CH4 emissions strongly increase from temperatures above 20 degrees Celsius,” she adds. Consequently, the scientists suspect that methane and nitrous oxide emissions from lichens, cyanobacteria and mosses could increase in the course of global warming.

This could be of greater significance especially in temperate latitudes, where cryptogamic covers represent one of the main sources for nitrous oxide emissions. In some tundra, steppe and desert regions, they are probably even the exclusive source.

In the next step the scientists will check the laboratory findings in field studies and include additional organisms in their research.

The researchers developed the idea of the current study at the Max Planck Institute, as some years ago, they had found out that cryptogamic covers absorb large quantities of carbon dioxide and nitrogen from the atmosphere. Lichens, mosses and cyanobacteria bind about as much carbon dioxide as the burning of biomass or fossil fuel releases annually. Additionally, Frank Keppler’s team at the Institute for Geo Sciences at the University of Heidelberg had discovered that plants and fungi can produce methane. Previously, it was assumed that biogenic methane was exclusively produced during the decomposition of organic material under exclusion of oxygen.

Original publication:
Katharina Lenhart, Bettina Weber, Wolfgang Elbert, Jörg Steinkamp, Tim Clough, Paul Crutzen, Ulrich Pöschl and Frank Keppler
Nitrous oxide and methane emissions from cryptogamic covers
Global Change Biology (2015), doi: 10.1111/gcb.12995

PD Dr. Bettina Weber
Max Planck Institute for Chemistry
Department of Multiphase Chemistry
55128 Mainz, Germany

Dr. Katharina Lenhart
Visiting Professor for Geo Ecology and Modeling
Justus-Liebig University Gießen
Interdisciplinary Research Center (IFZ)
Institute of Plant Ecology
35392 Gießen, Germany

Prof. Dr. Frank Keppler
Research Group Biogeochemistry
Institute of Geo Sciences
University of Heidelberg
Im Neuenheimer Feld 234-236
69120 Heidelberg, Germany

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>