Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New satellite method enables undersea estimates from space

04.04.2018

Statistical advance quantifies important ocean parameters in the illuminated ocean

Bigelow Laboratory for Ocean Sciences researchers have developed a statistical method to quantify important ocean measurements from satellite data, publishing their findings in the journal Global Biogeochemical Cycles. The study was made available online in December 2017, ahead of publication in January 2018.


Researchers aboard the RV Roger Revelle prepare a bottle to collect water from the deep ocean.

Credit: Rebecca Fowler

Their research remedies a problem that has plagued scientists for decades: ocean-observing satellites are incredibly powerful tools, but they can only "see" the surface layer of the ocean, leaving most of its depths out of reach.

The new method makes it possible to quantify six types of particles that are key to understanding ocean dynamics and ocean-atmosphere interactions. Scientists have long used ocean color remote sensing to measure these particles in surface waters, and now, they will be able to reliably calculate concentrations of these particles through the water column. These calculations will provide data about the first 100 meters of ocean water, or to the depth where light levels dim to about 1 percent of the brightness at the surface.

One important algae quantified by this new technique are the coccolithophores, ocean plants that surround themselves with reflective chalk plates that, en masse, can cause entire ocean basins to reflect more light when they "bloom." The effects of these microscopic coccolithophores are far-reaching: they influence biogeochemistry, global carbon cycling, and global microbial ecology. The carbon they produce when building their chalk plates even helps buffer the increasing acidity in the ocean caused by excess carbon dioxide in the atmosphere.

"It hit me that we've been calculating chlorophyll profiles from surface measurements for more than thirty years, but we don't know what the depth profiles of other biogeochemically-important materials look like," said Barney Balch, a senior research scientist at Bigelow Laboratory and lead author on the paper.

The researchers also studied variables related to other ocean plant groups, like diatoms, which build glass shells that carry carbon to the deep sea, sequestering it from the atmosphere. Understanding carbon cycling is essential to understanding present and future changes to global climate.

The effort to answer such huge questions was similarly great. Balch and his co-authors used data from 19 cruises, gathered from more than 1,300 locations in all of the world's oceans. From this vast dataset, they calculated the concentrations of six biogeochemically-relevant particles in the sunlit portion of the ocean.

"It's just a simple question, but it required a large global dataset to answer," Balch said. "The results provide new oceanographic insights into the ecology and biogeochemistry of these important algae and particles, and they make satellites an even more powerful tool for describing the entire illuminated depths of the ocean."

###

igelow Laboratory for Ocean Sciences is an independent, nonprofit research institute on the coast of Maine. Its research ranges from the microscopic life at the bottom of marine food webs to large-scale ocean processes that affect the entire planet. Recognized as a leader in Maine's emerging innovation economy, the Laboratory's research, education, and technology transfer programs are contributing to significant economic growth. Learn more at http://www.bigelow.org, and join the conversation on Facebook and Twitter.

Media Contact

Steven Profaizer
sprofaizer@bigelow.org
205-315-2567 x103

 @BigelowLab

http://www.bigelow.org 

Steven Profaizer | EurekAlert!
Further information:
https://www.bigelow.org/news/articles/2018-02-27.html
http://dx.doi.org/10.1002/2016GB005614

More articles from Life Sciences:

nachricht Primates in peril
15.06.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Flying spider - Thekla's Wondrous Journey
15.06.2018 | Technische Universität Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>