Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research clarifies how stem cells get activated to produce new hair

03.03.2016

Adult stem cells provide the body with a reservoir from which damaged or used up tissues can be replenished. In organs like the intestines and skin, which need constant rejuvenating, these stem cells are dividing frequently. But in other body structures, including the hair follicles, they are held in a quiescent state--one in which they don't reproduce until they receive signals from their surroundings that it's time to regenerate.

It makes intuitive sense that stem cells, being such a valuable resource, would be used sparingly. Yet scientists have limited understanding of how their quiescence is regulated, and are even unsure of its precise biological function. In a study published recently in PNAS, Elaine Fuchs, Rebecca C. Lancefield Professor and head of the Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, and Kenneth Lay, a graduate student in her lab, report on new insights into the biological signals that make hair follicle stem cells oscillate between states of quiescence and regenerative activity.


Hair follicle stem cells lacking the protein FOXC1 can only retain one old bulge in their hair follicles, while normal stem cells can keep up to four.

Credit: The Laboratory of Mammalian Cell Biology and Development at Rockefeller University/PNAS

"In an earlier study, my lab showed that when mice age, the old fat in their skin produces higher levels of a secreted signal, called BMP," Fuchs says. "This signal acts as a molecular brake on the hair follicle stem cells, causing them to spend much longer times in quiescence."

In the present study, Lay identified a stem cell gene that is activated by BMP signaling, and showed that when this gene is missing, the stem cells grow hairs with dramatically shorter intervals. "We thought initially that the key to hair growth might be the fountain of youth," Fuchs says, "but the mice's hair coat surprisingly thinned and greyed precociously."

More growth and fewer bulges

Usually the stem cells then create a new bulge along with the new hair, while ensuring that the old bulge and the old hair stay put in the hair follicle. Only the new bulge can make another new hair, but the old bulge is kept in place to maintain a thick and lush coat. In mice, hair follicles can accumulate up to four of these bulges.

When Lay and Fuchs created mice that lack FOXC1--by disabling or "knocking out" the gene that produces this protein--they observed that the animals' hair follicle stem cells spent more time growing hairs and less time in quiescence. Over the course of nine months, while hair follicles from normal mice grew four new hairs, those from the FOXC1 knockout mice had already made new hairs seven times. "The knockout stem cells enter an overactive state in which they can't establish quiescence adequately," explains Lay.

The researchers also found that in the absence of FOXC1, hair follicles always had only one hair despite having made new hairs seven times. This is because these hair follicles could not retain their old bulges, though they generated a new bulge without a problem. As the stem cells started proliferating more, they became less able to stick together. As a result, their old bulges did not stay properly tethered to the hair follicle when the newly growing hair pushed past it. And since the bulge emits quiescence signals, its loss activated the remaining stem cells even faster.

Going grey and going bald

While the hair follicle stem cells of FOXC1-deficient mice produce hairs at a relatively breakneck pace, this profligate growth seems to wear them out. Older knockout mice had sparser, greyer coats, and they could not regenerate their fur as quickly as their normal age-matched or younger peers. A similar phenomenon has been described in mouse hematopoietic stem cells, which give rise to blood cells--those stem cells that are more active in young animals appear to become exhausted as the animals grow older.

"Hair follicle stem cells influence the behavior of melanocyte stem cells, which co-inhabit the bulge niche," explains Fuchs. "Thus, when the numbers of hair follicle stem cells declined with age, so too did the numbers of melanocyte stem cells, resulting in premature greying of whatever hairs were left." Not much is known about naturally occurring hair loss with age, but these balding knockout mice may provide a model to study it.

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>