Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research clarifies how stem cells get activated to produce new hair

03.03.2016

Adult stem cells provide the body with a reservoir from which damaged or used up tissues can be replenished. In organs like the intestines and skin, which need constant rejuvenating, these stem cells are dividing frequently. But in other body structures, including the hair follicles, they are held in a quiescent state--one in which they don't reproduce until they receive signals from their surroundings that it's time to regenerate.

It makes intuitive sense that stem cells, being such a valuable resource, would be used sparingly. Yet scientists have limited understanding of how their quiescence is regulated, and are even unsure of its precise biological function. In a study published recently in PNAS, Elaine Fuchs, Rebecca C. Lancefield Professor and head of the Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, and Kenneth Lay, a graduate student in her lab, report on new insights into the biological signals that make hair follicle stem cells oscillate between states of quiescence and regenerative activity.


Hair follicle stem cells lacking the protein FOXC1 can only retain one old bulge in their hair follicles, while normal stem cells can keep up to four.

Credit: The Laboratory of Mammalian Cell Biology and Development at Rockefeller University/PNAS

"In an earlier study, my lab showed that when mice age, the old fat in their skin produces higher levels of a secreted signal, called BMP," Fuchs says. "This signal acts as a molecular brake on the hair follicle stem cells, causing them to spend much longer times in quiescence."

In the present study, Lay identified a stem cell gene that is activated by BMP signaling, and showed that when this gene is missing, the stem cells grow hairs with dramatically shorter intervals. "We thought initially that the key to hair growth might be the fountain of youth," Fuchs says, "but the mice's hair coat surprisingly thinned and greyed precociously."

More growth and fewer bulges

Usually the stem cells then create a new bulge along with the new hair, while ensuring that the old bulge and the old hair stay put in the hair follicle. Only the new bulge can make another new hair, but the old bulge is kept in place to maintain a thick and lush coat. In mice, hair follicles can accumulate up to four of these bulges.

When Lay and Fuchs created mice that lack FOXC1--by disabling or "knocking out" the gene that produces this protein--they observed that the animals' hair follicle stem cells spent more time growing hairs and less time in quiescence. Over the course of nine months, while hair follicles from normal mice grew four new hairs, those from the FOXC1 knockout mice had already made new hairs seven times. "The knockout stem cells enter an overactive state in which they can't establish quiescence adequately," explains Lay.

The researchers also found that in the absence of FOXC1, hair follicles always had only one hair despite having made new hairs seven times. This is because these hair follicles could not retain their old bulges, though they generated a new bulge without a problem. As the stem cells started proliferating more, they became less able to stick together. As a result, their old bulges did not stay properly tethered to the hair follicle when the newly growing hair pushed past it. And since the bulge emits quiescence signals, its loss activated the remaining stem cells even faster.

Going grey and going bald

While the hair follicle stem cells of FOXC1-deficient mice produce hairs at a relatively breakneck pace, this profligate growth seems to wear them out. Older knockout mice had sparser, greyer coats, and they could not regenerate their fur as quickly as their normal age-matched or younger peers. A similar phenomenon has been described in mouse hematopoietic stem cells, which give rise to blood cells--those stem cells that are more active in young animals appear to become exhausted as the animals grow older.

"Hair follicle stem cells influence the behavior of melanocyte stem cells, which co-inhabit the bulge niche," explains Fuchs. "Thus, when the numbers of hair follicle stem cells declined with age, so too did the numbers of melanocyte stem cells, resulting in premature greying of whatever hairs were left." Not much is known about naturally occurring hair loss with age, but these balding knockout mice may provide a model to study it.

Media Contact

Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

 @rockefelleruniv

http://www.rockefeller.edu 

Katherine Fenz | EurekAlert!

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>