New record: 3D-printed optical-electronic integration

Schematic illustration of an integrated electrically controlled microlaser module for optoelectronic hybrid integration. Briefly, this module is designed to be a thermo-responsive polymer resonator on top of a chip-scale metal heating circuit. The voltage is applied in-plane with the current transport to provide local-area thermal field, which induces the lasing wavelength change of the upper dye-doped microresonators. Credit: ©Science China Press

The ever-increasing demand on bandwidth and information density in ICs call for the micro/nano functional devices capable of being fabricated in three-dimensional (3D) ICs, which is desirable for their improved performance in data processing under lower consumption.

In such highly integrated circuits, however, selective electrical modulation of specific micro/nanoscale optical devices, including light sources and waveguides, is a key requirement for yielding more functional and more compact integrated elements, but hindered by the normal used nonlinearity found in electro-optic materials.

Femtosecond laser direct writing (FsLDW), as one of the 3D printing techniques, enables the direct and addressable construction of 3D-integrated optoelectronic devices utilizing organic compounds with two-photon polymerized features.

With doping flexibility, the polymerized microstructures can be readily incorporated with organic dye molecules to produce functional devices, like coherent laser sources. Besides, organic polymers possess excellent responsiveness to external stimuli, including temperature.

Their large thermo-optic coefficient enables the realization of the electrical tuning of resonant wavelength with high efficiency when they are fabricated into microcavity structures.

The incorporation of thermo-responsive polymeric microlaser with underneath electrical microheater in the 3D fabrication manner can be used as an effective hybrid microlaser module with selective electric modulation towards optical-electronic integration.

Very recently, Professor Yong Sheng Zhao's group in the Institute of Chemistry, Chinese Academy of Sciences demonstrated an in situ electrically modulated microlaser module based on 3D-printed dye-doped polymeric microdisks, which is published in Science China Chemistry.

The thermo-optic effect of the polymer matrix enabled the tuning of lasing modes from the microdisk upon heating. The shape designability of FsLDW allows the fabrication of higher-level microstructures to manipulate light signals, including the waveguide coupled microdisks for light remote control and the coupled double-microdisk resonators for laser mode selection. The latter microstructure was further integrated with an underneath electrical microheater.

As a result, the cavity resonant wavelength can be shifted on the basis of resistance heating controlled optical length change through the thermo-optic effect of polymeric matrix material, which enabled an electrical modulation of the output wavelength of the 3D-printed microlaser module.

###

This work was supported financially by the Ministry of Science and Technology of China (Grant No. 2017YFA0204502), and the National Natural Science Foundation of China (Grant Nos. 21533013 and 21790364).

See the article: Liu Y, Lin X, Wei C, Zhang C, Yao J, Zhao YS. 3D-printed optical-electronic integrated devices. Sci. China Chem., 2019, DOI: 10.1007/s11426-019-9503-0. https://doi.org/10.1007/s11426-019-9503-0

Media Contact

Zhao Yong Sheng
yszhao@iccas.ac.cn

http://www.scichina.com/ 

Media Contact

Zhao Yong Sheng EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors