Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protocol enables analysis of metabolic products from fixed tissues

15.07.2016

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in addition to those gained from Petri dishes and computer simulations. The tissue is usually fixed in formalin and embedded in paraffin wax in order to keep the tissue, as far as possible, in its original condition for later analyses.


A new mass spectrometry imaging protocol allows the analysis of metabolites like Adenosine monophosphate from FFPE tissue, shown here as background.

Source: Helmholtz Zentrum München

It was previously assumed that in material that had been treated in this way an analysis of metabolites, in contrast to DNA or proteins, would be barely possible for technical reasons. A team of scientists from the Analytical Pathology department at the Helmholtz Zentrum München led by Prof. Axel Karl Walch has now succeeded in refuting this belief.

Fixed tissues accessible on a large scale

The researchers developed a protocol which makes it possible – within one day – to determine the metabolite composition of tissues using a mass spectrometry imaging approach, and to make it visible in tissue sections. Relatively small amounts of material are required for this, according to the authors. “Our method permits the analysis of minute biopsies and even tissue micro-arrays, making it particularly interesting for molecular research and diagnostics,” explains doctoral candidate Achim Buck, together with Alice Ly, the first author of the study.

In order to ensure that the measured data was not falsified by the fixation process, the authors compared it with the measured values for the same samples that were not fixed but were shock frozen. “A large proportion of the measured metabolites occurred in both analyses,” reports Achim Buck. “We were able to show that the method works reliably and avoids the complex logistics and storage of shock-frozen samples.”

In addition to simple handling and high reproducibility, the possibility to conduct high throughput work is a key advantage of the new method*, according to the scientists. Above all, however, it is now possible to study the spatial distribution of molecules in the tissue graphically and with great precision. “That is an enormous advantage, both in research and in clinical diagnostic practice,” research team leader Walch says, assessing the new possibilities. “Using our new analytical method, our aim is now to identify new predictive, diagnostic and prognostic markers in tissues, as well as to understand disease processes.”

The scientists hope that publication of the protocol will also lead to an exchange with and further developments by colleagues with a view to advancing metabolic analyses of archived tissues.

Further Information

Background:
* Via tissue microarrays, which permit the analysis of several hundred patients in one measurement, tissue-based scientific and diagnostic questions relating to the pathogenesis of diseases and new treatment options can be clarified on a high throughput basis.

Original publication:
Ly, A. & Buck, A. et al. (2016). High Mass Resolution MALDI Mass Spectrometry Imaging of Metabolites from Formalin-Fixed Paraffin Embedded Tissue, Nature Protocols, DOI: nprot.2016.081

Supporting publication:
Buck, A. & Ly, A. et al. (2015). High-resolution MALDI-FT-ICR MS Imaging for the analysis of metabolites from formalin-fixed paraffin-embedded clinical tissue samples, The Journal of Pathology, doi:10.1002/path.4560

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Analytical Pathology Department (AAP) carries out scientific development, as a complement to research units with a clinical and fundamental orientation, of translational research on diseases that occur in tissue. AAP is involved in the translation of (for example) in-vitro models or animal models to application in humans. AAP thus links, in collaboration with the Institute for Pathology (PATH), basic research with diagnostic application, subsequently translating the findings of experimental and molecular pathology into procedures for the classification of diseases and predictive diagnostics dealing with tissue. http://www.helmholtz-muenchen.de/aap

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München:
Prof. Dr. Axel Karl Walch, Helmholtz Zentrum München - German Research Center for Environmental Health, Analytical Pathology Department, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2739, E-mail: axel.walch@helmholtz-muenchen.de

Weitere Informationen:

http://www.nature.com/nprot/journal/v11/n8/full/nprot.2016.081.html

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>