Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein booster may lead to better DNA vaccines and gene therapy

05.03.2015

Scientists have discovered a new way to manipulate how cells function, a finding that might help advance an experimental approach to improving public health: DNA vaccines, which could be more efficient, less expensive and easier to store than traditional vaccines.

Their approach, based on research results published this week in the journal Proceedings of the National Academy of Sciences, improves upon an existing laboratory technique, transfection, widely used to study how cells and viruses work.

Jaquelin Dudley, a professor of molecular biosciences at The University of Texas at Austin, and her team have developed a method for boosting the amounts of certain proteins a host cell produces when genes are delivered by transfection. Coaxing cells to produce novel proteins, such as those associated with viruses, is a key feature of DNA vaccines. Dudley's method causes cells to produce novel proteins at levels 5 to 20 times as high as with previous methods.

The researchers suggest that their finding might lead to better DNA vaccines, a relatively new method of vaccination that health experts say would increase vaccination rates, especially in the developing world. Whereas traditional vaccines train the body to attack viruses by introducing weakened forms of the virus, a DNA vaccine works differently, using a bit of DNA specified by a virus to prompt the production of proteins that lead to immunity.

By boosting the amount of proteins produced by the hosts' cells, Dudley's new method might invoke a stronger immune response in patients receiving a DNA vaccine. And, by making smaller vaccine doses possible, it might also reduce the risk that the patient's immune system would inadvertently attack healthy host cells.

The scientists' discovery could also help advance another experimental approach: gene therapies, which treat genetic disorders by replacing or disrupting genes that aren't working properly. Gene therapies targeting Parkinson's, hemophilia, leukemia, cystic fibrosis and many other diseases are being developed, but gene therapies have proved difficult, as they sometimes induce a cancer or trigger an immune response against cells with the introduced genes. The new method for boosting novel protein production might prevent these effects by allowing the insertion of smaller amounts of DNA.

The method for boosting production of novel proteins in a host cell was discovered by accident. Dudley and her team were attempting to understand how mouse mammary tumor virus (MMTV), a virus related to HIV that causes breast cancer and leukemia, manipulates an infected host cell to keep the host's immune system from attacking it.

A bit of genetic material that was expected to produce lower levels of a certain protein instead caused cells to produce a lot more of it.

"Everything in the literature would indicate that something abnormal had happened," said Dudley. "But we went back and used several different detection methods to show that what we observed was real."

According to conventional wisdom, when a cell detects the presence of foreign DNA such as the one the researchers introduced, it shuts down production of proteins to prevent the spread of viruses.

"What we've described is that introducing these DNAs leads to a different detection system in the cell that, instead of shutting down protein expression, increases expression," said Dudley.

When the researchers combined this protein-boosting DNA with genes for other novel proteins and introduced them into host cells, those proteins were also produced at a much higher rate than with traditional methods of delivering genes. Dudley suggests that including this extra bit of genetic material could be applied to a wide range of research problems to increase the production of specific proteins within cells.

###

Dudley's co-authors are Yongqiang Gou, Hyewon Byun, Adam E. Zook, Gurvani B. Singh, Andrea K. Nash and Mary M. Lozano.

This research was supported by the National Institutes of Health.

Read the paper "Retroviral vectors elevate coexpressed protein levels in trans through cap-dependent translation": http://www.pnas.org/content/early/2015/03/02/1420477112.full.pdf+html

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @texasscience

http://www.utexas.edu

Marc Airhart | EurekAlert!

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>