Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New probe developed for improved high resolution measurement of brain temperature

21.07.2016

Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury

The brain is the most temperature-sensitive organ in the body. Even small deviations in brain temperature are capable of producing profound effects--including behavioral changes, cell toxicity, and neuronal cell death. The problem faced by researchers and clinicians is how to measure and understand these changes in the brain and how they are influenced by complex biochemical and physiological pathways that may be altered by disease, brain injury or drug abuse.


The optical fiber probe can generate and harness light to detect temperature changes in biological systems.

Research Contact: Stefan Musolino stefan.musolino@adelaide.edu.au Erik Schartner erik.schartner@adelaide.edu.au

In a new paper published in Biomedical Optics Express, from The Optical Society (OSA), Stefan Musolino of the University of Adelaide and the ARC Centre of Excellence for Nanoscale BioPhotonics, Australia, and his colleagues describe a new optical fiber-based probe capable of making pinpoint brain temperature measurements in moving lab animals.

"Within our center we house physicists, chemists, and medical researchers and one of the interests of our center's 'Origin of Sensation' theme is temperature change in the central nervous system," Musolino said. "It is only recently that more studies in my area of research-- drug-induced hyperthermia-- have started looking at changes in brain temperature in addition to changes in core body temperature within drug-treated animals. We wanted to further investigate these drug-induced brain temperature changes using center developed probes in order to develop a better understanding of the mechanisms driving them."

The probe developed by Musolino and his colleagues consists of an optical fiber, sheathed within a protective sleeve and encased within a 4-millimeter-long 25-gauge needle. The end-face of the approximately 2-mm-long probe tip is dipped into molten glass made of tellurite, doped with a small amount of the rare-earth oxide erbium. When inserted into the brain, the color of the light emitted from the erbium ions will vary depending on the temperature of the surrounding tissue; the temperature of that tissue can thus be determined by monitoring the light of these color changes. This method allows for measurements to be performed with a precision of a fraction of a degree (0.1°C).

"The area that can measure temperature is less than 125 micrometers in size," said study co-author Erik Schartner "making it highly spatially precise and able to isolate temperature readings from very small brain areas." The researchers say it is possible to make the temperature-sensing area of the probe tip smaller still -- as small as a few microns across -- by modifying the probe's design.

The probe's immediate application will be to investigate changes in brain temperature within moving lab animals exposed to certain drugs of abuse, such MDMA (or 'ecstasy'). "We will also look at the possible therapeutic properties of the tetracycline antibiotic minocycline and its ability to attenuate the changes in temperature caused by the administration of MDMA," said Musolino. "In the future we will also be looking into combining this probe with other optical sensors in the hopes of developing new optical fiber-based sensing techniques for use in medical science labs that are examining real-word medical problems."

Eventually, a fully developed probe could be used in human brain temperature monitoring after traumatic brain injury, stroke or hemorrhage -- times when the brain is extremely sensitive and small deviations in temperature can lead to additional brain injury.

"Continuous monitoring of brain temperature after brain injury would allow for the effects of hyperthermia management techniques such as anti-pyretics -- drugs that reduces fever -- and hypothermia to be observed and evaluated by clinicians in real time," Musolino said. "These new tools and this deeper understanding will ultimately give us better understanding of the brain and how to more quickly react to brain injury."

###

Paper: Stefan Musolino, Erik P. Schartner, Georgios Tsiminis, Abdallah Salem, Tanya M. Monro, and Mark R. Hutchinson, "Portable optical fiber probe for in vivo brain temperature measurements," Biomed. Opt. Express 7, 3069-3077 (2016). DOI: 10.1364/BOE.7.003069.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger of The Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contact

Rebecca Andersen
RAndersen@osa.org
202-416-1443

 @opticalsociety

http://www.osa.org 

Rebecca Andersen | EurekAlert!

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>