Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perspectives on how ecological communities are assembled

22.04.2015

What do you get when you combine a professor who literally wrote the book on community ecology and another who has more than 40 years experience as a leader in the field of evolutionary biology?

You get a new way to look at how organisms of all sorts interact and evolve to form ecological communities. Two Michigan State University professors published their results in the current issue of Trends in Ecology and Evolution, and together they have come up with a new way to think about how evolution and ecology interact in community assembly.


What do you get when you combine a professor who literally wrote the book on community ecology and another who has more than 40 years experience as a leader in the field of evolutionary biology? You get a new way to look at how organisms of all sorts interact and evolve to form ecological communities.

Courtesy of MSU

The MSU team is suggesting that a stronger focus should be placed on how species that evolved in in isolation eventually move across the landscape and can coexist in the same region, and the feedbacks between local and regional processes. Only then, they argue, can we fully understand community development and the importance of dynamic species pools.

"We are attempting to expand the thinking on this long-standing question in ecology," said Gary Mittelbach, MSU ecologist and author of the textbook "Community Ecology." "Community is a term that every ecologist uses to describe species found together in space and time, but everyone visualizes how these species got there and how they persist in a different way. Some species thrive in some areas but can't survive in others. Where do you draw the line?"

The line Mittelbach and Douglas Schemske, MSU plant biologist, have drawn is a bigger one, spanning eons rather than decades. The pair decided to step back, reflect on their combined 80 years of scientific experience, and expand the study of community assembly to include regional, rather than local, influences, as well as stretch the shorter time spans traditionally used by ecologists.

"When we talk speciation, we're talking hundreds of thousands, sometimes millions, of years," Schemske said. "Existing theories of ecology, however, may be viewing things and trying to explain things on vastly different, shorter time scales."

For example, one explanation for how plants and animals live and thrive in a specific place is based on the theory of island biogeography. Since most islands or island-like systems, such as lakes, are geologically young and isolated, observing their colonization and the development of their fauna and flora gives scientists a model to understand the assembly of communities.

A classic example is the volcanic island of Krakatoa in the Pacific, which exploded in 1883 and was wiped clean of life. As the island cooled and was recolonized with organisms from the mainland, scientists were able to observe firsthand how communities of plants and animals reassembled. On Krakatoa, there has been essentially no evolution of new species.

However, in other island systems, new species have evolved in place to become part of the community, such as Darwin's finches on the Galapagos or cichlids fishes in Lake Victoria in Africa. While the interplay between ecology and evolution in community assembly in these island-like systems has been well-studied, little research has been conducted on continental communities.

"The study of islands has shown how communities may assemble through a combination of colonization, natural selection and evolution," Mittelbach said. "But, how good is this model for the assembly of communities on continental scales and across millions of years? We're looking at these processes through the combined lenses of ecology and evolution to see if we can untangle what it all means."

Their ideas have implications for other long-standing questions, such as why tropical regions have higher biodiversity than temperate and polar regions. For example, there are approximately 640 species of trees in North America. However, there are more than 700 varieties of fig trees alone, growing in equatorial regions.

"How is it possible that there are more varieties of fig trees than all the trees in North America?" Schemske asked. "We're not claiming that we can solve this, but that's one of the big questions we're hoping to answer or inspire other scientists to undertake and answer."

###

Mittelbach's and Schemske's current research on this topic is being funded by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>