Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perspectives on how ecological communities are assembled

22.04.2015

What do you get when you combine a professor who literally wrote the book on community ecology and another who has more than 40 years experience as a leader in the field of evolutionary biology?

You get a new way to look at how organisms of all sorts interact and evolve to form ecological communities. Two Michigan State University professors published their results in the current issue of Trends in Ecology and Evolution, and together they have come up with a new way to think about how evolution and ecology interact in community assembly.


What do you get when you combine a professor who literally wrote the book on community ecology and another who has more than 40 years experience as a leader in the field of evolutionary biology? You get a new way to look at how organisms of all sorts interact and evolve to form ecological communities.

Courtesy of MSU

The MSU team is suggesting that a stronger focus should be placed on how species that evolved in in isolation eventually move across the landscape and can coexist in the same region, and the feedbacks between local and regional processes. Only then, they argue, can we fully understand community development and the importance of dynamic species pools.

"We are attempting to expand the thinking on this long-standing question in ecology," said Gary Mittelbach, MSU ecologist and author of the textbook "Community Ecology." "Community is a term that every ecologist uses to describe species found together in space and time, but everyone visualizes how these species got there and how they persist in a different way. Some species thrive in some areas but can't survive in others. Where do you draw the line?"

The line Mittelbach and Douglas Schemske, MSU plant biologist, have drawn is a bigger one, spanning eons rather than decades. The pair decided to step back, reflect on their combined 80 years of scientific experience, and expand the study of community assembly to include regional, rather than local, influences, as well as stretch the shorter time spans traditionally used by ecologists.

"When we talk speciation, we're talking hundreds of thousands, sometimes millions, of years," Schemske said. "Existing theories of ecology, however, may be viewing things and trying to explain things on vastly different, shorter time scales."

For example, one explanation for how plants and animals live and thrive in a specific place is based on the theory of island biogeography. Since most islands or island-like systems, such as lakes, are geologically young and isolated, observing their colonization and the development of their fauna and flora gives scientists a model to understand the assembly of communities.

A classic example is the volcanic island of Krakatoa in the Pacific, which exploded in 1883 and was wiped clean of life. As the island cooled and was recolonized with organisms from the mainland, scientists were able to observe firsthand how communities of plants and animals reassembled. On Krakatoa, there has been essentially no evolution of new species.

However, in other island systems, new species have evolved in place to become part of the community, such as Darwin's finches on the Galapagos or cichlids fishes in Lake Victoria in Africa. While the interplay between ecology and evolution in community assembly in these island-like systems has been well-studied, little research has been conducted on continental communities.

"The study of islands has shown how communities may assemble through a combination of colonization, natural selection and evolution," Mittelbach said. "But, how good is this model for the assembly of communities on continental scales and across millions of years? We're looking at these processes through the combined lenses of ecology and evolution to see if we can untangle what it all means."

Their ideas have implications for other long-standing questions, such as why tropical regions have higher biodiversity than temperate and polar regions. For example, there are approximately 640 species of trees in North America. However, there are more than 700 varieties of fig trees alone, growing in equatorial regions.

"How is it possible that there are more varieties of fig trees than all the trees in North America?" Schemske asked. "We're not claiming that we can solve this, but that's one of the big questions we're hoping to answer or inspire other scientists to undertake and answer."

###

Mittelbach's and Schemske's current research on this topic is being funded by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>