Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New perspectives on how ecological communities are assembled

22.04.2015

What do you get when you combine a professor who literally wrote the book on community ecology and another who has more than 40 years experience as a leader in the field of evolutionary biology?

You get a new way to look at how organisms of all sorts interact and evolve to form ecological communities. Two Michigan State University professors published their results in the current issue of Trends in Ecology and Evolution, and together they have come up with a new way to think about how evolution and ecology interact in community assembly.


What do you get when you combine a professor who literally wrote the book on community ecology and another who has more than 40 years experience as a leader in the field of evolutionary biology? You get a new way to look at how organisms of all sorts interact and evolve to form ecological communities.

Courtesy of MSU

The MSU team is suggesting that a stronger focus should be placed on how species that evolved in in isolation eventually move across the landscape and can coexist in the same region, and the feedbacks between local and regional processes. Only then, they argue, can we fully understand community development and the importance of dynamic species pools.

"We are attempting to expand the thinking on this long-standing question in ecology," said Gary Mittelbach, MSU ecologist and author of the textbook "Community Ecology." "Community is a term that every ecologist uses to describe species found together in space and time, but everyone visualizes how these species got there and how they persist in a different way. Some species thrive in some areas but can't survive in others. Where do you draw the line?"

The line Mittelbach and Douglas Schemske, MSU plant biologist, have drawn is a bigger one, spanning eons rather than decades. The pair decided to step back, reflect on their combined 80 years of scientific experience, and expand the study of community assembly to include regional, rather than local, influences, as well as stretch the shorter time spans traditionally used by ecologists.

"When we talk speciation, we're talking hundreds of thousands, sometimes millions, of years," Schemske said. "Existing theories of ecology, however, may be viewing things and trying to explain things on vastly different, shorter time scales."

For example, one explanation for how plants and animals live and thrive in a specific place is based on the theory of island biogeography. Since most islands or island-like systems, such as lakes, are geologically young and isolated, observing their colonization and the development of their fauna and flora gives scientists a model to understand the assembly of communities.

A classic example is the volcanic island of Krakatoa in the Pacific, which exploded in 1883 and was wiped clean of life. As the island cooled and was recolonized with organisms from the mainland, scientists were able to observe firsthand how communities of plants and animals reassembled. On Krakatoa, there has been essentially no evolution of new species.

However, in other island systems, new species have evolved in place to become part of the community, such as Darwin's finches on the Galapagos or cichlids fishes in Lake Victoria in Africa. While the interplay between ecology and evolution in community assembly in these island-like systems has been well-studied, little research has been conducted on continental communities.

"The study of islands has shown how communities may assemble through a combination of colonization, natural selection and evolution," Mittelbach said. "But, how good is this model for the assembly of communities on continental scales and across millions of years? We're looking at these processes through the combined lenses of ecology and evolution to see if we can untangle what it all means."

Their ideas have implications for other long-standing questions, such as why tropical regions have higher biodiversity than temperate and polar regions. For example, there are approximately 640 species of trees in North America. However, there are more than 700 varieties of fig trees alone, growing in equatorial regions.

"How is it possible that there are more varieties of fig trees than all the trees in North America?" Schemske asked. "We're not claiming that we can solve this, but that's one of the big questions we're hoping to answer or inspire other scientists to undertake and answer."

###

Mittelbach's and Schemske's current research on this topic is being funded by the National Science Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>