Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Path of Genetic Research: Scientists Uncover 4-Stranded Elements of Maize DNA

04.12.2014

A team led by Florida State University researchers has identified DNA elements in maize that could affect the expression of hundreds or thousands of genes.

“Maybe they are part of the machinery that allows an organism to turn hundreds of genes off or on,” said Associate Professor of Biological Science Hank Bass.


Jonathan Doster

Maize in earlier stages of development.

Bass and Carson Andorf, a doctoral student in computer science at Iowa State University, began this exploration of the maize genome sequence along with colleagues from FSU, Iowa State and the University of Florida. They wanted to know if certain DNA structures such as the four-strand G-quadruplex (G4) DNA might exist throughout the genetic material of maize.

G4 structures are present in genes that regulate cancer and cell division in humans, making it an important focus in scientific research. But, not much is known about them. Bass, a plant biologist, believed examining them in maize might yield more answers.

The general public thinks of DNA as two connected strands known as the double helix. But scientists also discovered over the years that those strands regularly separate so they can replicate the genetic material. That material can also twist into different shapes such as a G-quadruplex.

Bass and his colleagues found 150,000 sequence motifs that could theoretically adopt the G4 DNA structure, and they were distributed all over the chromosomes. Further examination showed that they were present in very specific places, as opposed to a random distribution.

Given the strategic placement, the G4 is likely to perform some sort of function. Preliminary work showed that many of the genes identified were implicated in responses to energy crises within plant cells.

The article is featured on the cover of the December 2014 issue of the Journal of Genetics and Genomics.

“We found hot spots where the G4 elements are frequently located,” Bass said. “These are like the light switches for the genes.”

Further examination must be done to determine how and why these elements work, but Bass’ team believes that in maize the G4 elements help the plant deal with abiotic stresses such as low oxygen or low sugar.

The next step in the research will be for Bass and other scientists to run experiments testing the regulation ability of the G4 elements on a gene.

“It’s a very interesting aspect of DNA,” Bass said. “And people in the genetics field are very excited about it.”

Other authors on the paper include FSU Assistant Professor Elizabeth Stroupe, Stroupe’s graduate student Mykhailo Kopylov, Iowa State researchers Drena Dobbs and Carolyn Lawrence, and University of Florida researcher Karen Koch.

Contact Information
Kathleen Haughney
Research Media & Content Specialist
khaughney@fsu.edu
Phone: 850-644-1489

Kathleen Haughney | newswise
Further information:
http://www.sfsu.edu/

Further reports about: Bass DNA DNA structures G-quadruplex Genetic Path Uncover genes genetic material maize plant cells scientists sequence structures

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>