Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Path of Genetic Research: Scientists Uncover 4-Stranded Elements of Maize DNA

04.12.2014

A team led by Florida State University researchers has identified DNA elements in maize that could affect the expression of hundreds or thousands of genes.

“Maybe they are part of the machinery that allows an organism to turn hundreds of genes off or on,” said Associate Professor of Biological Science Hank Bass.


Jonathan Doster

Maize in earlier stages of development.

Bass and Carson Andorf, a doctoral student in computer science at Iowa State University, began this exploration of the maize genome sequence along with colleagues from FSU, Iowa State and the University of Florida. They wanted to know if certain DNA structures such as the four-strand G-quadruplex (G4) DNA might exist throughout the genetic material of maize.

G4 structures are present in genes that regulate cancer and cell division in humans, making it an important focus in scientific research. But, not much is known about them. Bass, a plant biologist, believed examining them in maize might yield more answers.

The general public thinks of DNA as two connected strands known as the double helix. But scientists also discovered over the years that those strands regularly separate so they can replicate the genetic material. That material can also twist into different shapes such as a G-quadruplex.

Bass and his colleagues found 150,000 sequence motifs that could theoretically adopt the G4 DNA structure, and they were distributed all over the chromosomes. Further examination showed that they were present in very specific places, as opposed to a random distribution.

Given the strategic placement, the G4 is likely to perform some sort of function. Preliminary work showed that many of the genes identified were implicated in responses to energy crises within plant cells.

The article is featured on the cover of the December 2014 issue of the Journal of Genetics and Genomics.

“We found hot spots where the G4 elements are frequently located,” Bass said. “These are like the light switches for the genes.”

Further examination must be done to determine how and why these elements work, but Bass’ team believes that in maize the G4 elements help the plant deal with abiotic stresses such as low oxygen or low sugar.

The next step in the research will be for Bass and other scientists to run experiments testing the regulation ability of the G4 elements on a gene.

“It’s a very interesting aspect of DNA,” Bass said. “And people in the genetics field are very excited about it.”

Other authors on the paper include FSU Assistant Professor Elizabeth Stroupe, Stroupe’s graduate student Mykhailo Kopylov, Iowa State researchers Drena Dobbs and Carolyn Lawrence, and University of Florida researcher Karen Koch.

Contact Information
Kathleen Haughney
Research Media & Content Specialist
khaughney@fsu.edu
Phone: 850-644-1489

Kathleen Haughney | newswise
Further information:
http://www.sfsu.edu/

Further reports about: Bass DNA DNA structures G-quadruplex Genetic Path Uncover genes genetic material maize plant cells scientists sequence structures

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>