Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Model to study HIV latency in brain cells

18.06.2015

Over 35 million people worldwide are currently infected by HIV. Antiviral therapies can keep the virus from multiplying. However, no drug can cure infection so far, because various cell types continue to carry the virus in a latent, i.e. quiescent, state. Scientists of Helmholtz Zentrum München have now established a model for latent HIV infection of brain cells. The researchers used this model to identify various compounds that affect latency of the virus in the brain. This study was published in the journal AIDS.

“Chronic infection is caused by long-lived cells with resting viral genomes that are activated by different factors,” explained Prof. Dr. Ruth Brack-Werner of the Institute of Virology. “These so-called latently infected cells occur in the blood and in the brain, among others.


Picture: Prof. Dr. Ruth Brack-Werner and Dr. Martha Schneider

Source: HMGU

HIV latency in the brain is particularly difficult to investigate,” she added. Her research group is studying HIV persistence in a very important type of brain cells called astrocytes. The human brain contains billions of them. The many functions of astrocytes include protecting the brain from injury and harmful agents and providing essential support for nerve cells. Mature astrocytes can have a very long lifespan and may exist for years.

Recent studies identified HIV genomes in up to 19% of astrocytes in brain tissues from deceased HIV-1 infected individuals. So far, no experimental model has existed to study HIV latency in these cells. “With our model system, we can simulate latent HIV infection in astrocytes,” said Dr. Martha Schneider, first author of the study.

The researchers showed that various substances, including the cytokine TNF-alpha, can reactivate the inactive virus. Conversely, it was also possible to inhibit the reactivation of the virus by treating the cells with certain compounds. “These results identify drug candidates that may prevent activation of latent viruses in astrocytes”, Schneider concluded.

In the future, the scientists plan to use this system to study the effect of these and other compounds that may prevent the activation of HIV-1 in the brain. As study director Brack-Werner explained: “Several viral proteins are toxic to neurons and may cause immune damage in the brain. Since only limited replacement of astrocytes occurs in the brain, loss of these cells may cause serious damage. Thus silencing the virus in brain cells is an important goal.” In addition, the researchers plan to test the effect of approved drugs and thus to improve the clinical care of HIV-1 patients in the future.


Further Information

Original Publication:
Schneider, M. et al. (2015). A new model for post-integration latency in macroglial cells to study HIV-1 reservoirs of the brain, AIDS, DOI:10.1097/QAD.0000000000000691

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Virology (VIRO) investigates viruses that chronically infect humans and can cause life-threatening diseases. The research activities of the institute focus mainly on the HI virus which causes AIDS, on endogenous retroviruses, which are integrated into our germline, and hepatitis B and C viruses, which cause liver cirrhosis and hepatocellular carcinoma. Molecular studies identify new diagnostic and therapeutic concepts to prevent and treat these viral diseases or to prevent the formation of virus-induced tumors.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49-(0)89-3187-2238 - Fax: +49 89-3187-3324 - Email: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Prof. Dr. Ruth Brack-Werner, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institut für Virologie, Ingolstädter Landstr. 1, 85764 Neuherberg – Phone: +49-(0)89-3187-2923 - Email: brack@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/en/index.html - Website Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/viro/index.html - Website Institute of Virology
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html - Press Releases of the Helmholtz Zentrum München

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>