Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method visualizes the hidden language of the brain

17.12.2015

Dr. Gáspár Jékely and his team at the Max Planck Institute for Developmental Biology in Tübingen have developed an innovative method called siGOLD for the complete three dimensional reconstruction of neurons and their surrounding network. Antibodies coupled to gold particles are used to stain neuronal signaling molecules specific for one subset of nerve cells. siGOLD combines this molecular information with electron microscopy imaging, allowing a more complete understanding of how neurons communicate.

To understand how an organism’s nervous system functions, a circuit map of all its neuronal connections, known as the connectome, can be generated. A connectome is similar to an electrical wiring diagram of a circuit board and includes information about all the wires of neurons (axons and dendrites) and how these connect to each other by synapses.


Scanning electron microscopic image of a Platynereis larva. Such a larva was sectioned to 5000 sections and its neuronal circuits containing neuropeptides were reconstructed after siGOLD labelling.

Réza Shahidi/Max Planck Institute for Developmental Biology


The neurons shown in color were reconstructed from electron microscopic sections and the neuropeptide signalling molecules contained within these neurons were identified using siGOLD labelling.

Réza Shahidi/ Max Planck Institute for Developmental Biology

Besides the wiring, neurons talk to each other through a diverse set of small signaling molecules such as neurotransmitters or neuropeptides. The type of small molecule produced by different types of neurons will determine how neurons influence each other.

To directly assign small neuropeptide molecules to neurons in a connectome in a high-resolution, high-throughput manner, Jékely and his team have developed a new method. Very thin slices of nervous tissue have to be imaged by high-resolution electron microscopy (EM). By combining these slices, the neurons can be followed throughout the sections.

The research team identified small neuropeptides suitable for EM. These neuropeptides are widely distributed throughout the nervous system and each occurs in a specific subset of neurons. The team developed antibodies that each recognize one neuropeptide.

These antibodies can be coupled to tiny gold particles so that they are easily recognizable on EM sections as black dots. The scientists stained various sections with different antibodies, allowing the tagging of several different neurons.

The team calls this method serial-multiplex immunogold, or siGOLD for short. siGOLD allows the complete three dimensional reconstruction of neurons to which the small neuropeptides have been directly assigned. It is also possible to reconstruct the partner neurons of these nerve cells, and obtain wiring diagrams that contain the distribution of neuropeptides in the circuit.

Jékely´s team worked with the marine annelid Platynereis dumerilii, which qualifies as a model due to its small size. "Size matters", says Dr. Jékely, “the Platynereis larva is about 12,000 times smaller in volume than the mouse brain, so it can be completely reconstructed by serial EM much faster”.

The widespread nature and functional importance of neuropeptides in animal nervous systems makes the antibody labeling approach used in siGOLD convenient and applicable in many organisms. “We are confident that siGOLD will also work in other organisms”, says Shahidi, first author of the study “and we are rather excited by this prospect. Many neuropeptides in vertebrates, for example, enkephalin, are also related to the neuropeptides of the Platynereis nervous system.”

The siGOLD approach enables the direct overlaying of information about small molecules present in neurons onto neuronal circuit maps and could be adapted to enrich connectome data with molecular information in many other organisms.


Insights into the method
An understanding of how the nervous system functions requires not only the knowledge of precise anatomical structure of the neuronal connections but also of the molecules expressed by each neuron in the connectome.

Since synapses are very small (in the nanometer range), the discernible examination of neuronal connections in a nervous system requires high-resolution, only obtainable by electron microscopy (EM).

For EM imaging, nervous tissue has to be fixed, embedded in plastic resin, and sliced with a diamond knife into ultrathin sections, usually only 40 nm thick. The first author of the study, Réza Shahidi, sectioned an entire larva of the marine annelid Platynereis dumerilii into 5,000 sections.

Each section is then imaged at a very high resolution, allowing the identification of all membranes and synapses. The neurons can be followed throughout the sections, allowing the reconstruction of entire neuronal circuits. This recontsruction does not yet contain information about the signaling molecules the neurons communicate with.

There are some techniques that allow researchers to assign small molecules to neurons at EM resolution. However, these techniques require the expression of special ‘tags’ in defined neurons by means of transgenesis, limiting the use of these techniques to one or a few markers per individual. Some of these technologies also lack optimal resolution and proper contrast for EM studies.

Jékely and his team identified a diverse class of neuropeptides that survive the fixation and processing treatment for EM. These neuropeptides can be tagged by specific antibodies coupled to gold particles. Dr. Jékely's team demonstrated the utility of the siGOLD method by identifying and reconstructing over 80 neurons using 11 different antibodies on the Platynereis larval sections.

Original Publication:
Réza Shahidi, Elizabeth A. Williams, Markus Conzelmann, Albina Asadulina, Csaba Verasztó, Sanja Jasek, Luis A. Bezares-Calderón and Gáspár Jékely: A Serial Multiplex Immunogold Labeling Method for Identifying Peptidergic Neurons in Connectomes. Published December 15, 2015
Cite as eLife 2015;10.7554/eLife.11147
DOI: http://dx.doi.org/10.7554/eLife.11147
http://elifesciences.org/content/early/2015/12/15/eLife.11147

Contact:
Gáspár Jékely
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601-1310
E-Mail: gaspar.jekely@tuebingen.mpg.de

Nadja Winter
Press officer (Public Relations)
Phone: +49 7071 601- 444
E-Mail: presse-eb@tuebingen.mpg.de

Printable images can be obtained at the Public Relations Office. Please send a proof upon publication.

About us:
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 360 people and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

Weitere Informationen:

http://elifesciences.org/content/early/2015/12/15/eLife.11147

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>