Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method visualizes the hidden language of the brain


Dr. Gáspár Jékely and his team at the Max Planck Institute for Developmental Biology in Tübingen have developed an innovative method called siGOLD for the complete three dimensional reconstruction of neurons and their surrounding network. Antibodies coupled to gold particles are used to stain neuronal signaling molecules specific for one subset of nerve cells. siGOLD combines this molecular information with electron microscopy imaging, allowing a more complete understanding of how neurons communicate.

To understand how an organism’s nervous system functions, a circuit map of all its neuronal connections, known as the connectome, can be generated. A connectome is similar to an electrical wiring diagram of a circuit board and includes information about all the wires of neurons (axons and dendrites) and how these connect to each other by synapses.

Scanning electron microscopic image of a Platynereis larva. Such a larva was sectioned to 5000 sections and its neuronal circuits containing neuropeptides were reconstructed after siGOLD labelling.

Réza Shahidi/Max Planck Institute for Developmental Biology

The neurons shown in color were reconstructed from electron microscopic sections and the neuropeptide signalling molecules contained within these neurons were identified using siGOLD labelling.

Réza Shahidi/ Max Planck Institute for Developmental Biology

Besides the wiring, neurons talk to each other through a diverse set of small signaling molecules such as neurotransmitters or neuropeptides. The type of small molecule produced by different types of neurons will determine how neurons influence each other.

To directly assign small neuropeptide molecules to neurons in a connectome in a high-resolution, high-throughput manner, Jékely and his team have developed a new method. Very thin slices of nervous tissue have to be imaged by high-resolution electron microscopy (EM). By combining these slices, the neurons can be followed throughout the sections.

The research team identified small neuropeptides suitable for EM. These neuropeptides are widely distributed throughout the nervous system and each occurs in a specific subset of neurons. The team developed antibodies that each recognize one neuropeptide.

These antibodies can be coupled to tiny gold particles so that they are easily recognizable on EM sections as black dots. The scientists stained various sections with different antibodies, allowing the tagging of several different neurons.

The team calls this method serial-multiplex immunogold, or siGOLD for short. siGOLD allows the complete three dimensional reconstruction of neurons to which the small neuropeptides have been directly assigned. It is also possible to reconstruct the partner neurons of these nerve cells, and obtain wiring diagrams that contain the distribution of neuropeptides in the circuit.

Jékely´s team worked with the marine annelid Platynereis dumerilii, which qualifies as a model due to its small size. "Size matters", says Dr. Jékely, “the Platynereis larva is about 12,000 times smaller in volume than the mouse brain, so it can be completely reconstructed by serial EM much faster”.

The widespread nature and functional importance of neuropeptides in animal nervous systems makes the antibody labeling approach used in siGOLD convenient and applicable in many organisms. “We are confident that siGOLD will also work in other organisms”, says Shahidi, first author of the study “and we are rather excited by this prospect. Many neuropeptides in vertebrates, for example, enkephalin, are also related to the neuropeptides of the Platynereis nervous system.”

The siGOLD approach enables the direct overlaying of information about small molecules present in neurons onto neuronal circuit maps and could be adapted to enrich connectome data with molecular information in many other organisms.

Insights into the method
An understanding of how the nervous system functions requires not only the knowledge of precise anatomical structure of the neuronal connections but also of the molecules expressed by each neuron in the connectome.

Since synapses are very small (in the nanometer range), the discernible examination of neuronal connections in a nervous system requires high-resolution, only obtainable by electron microscopy (EM).

For EM imaging, nervous tissue has to be fixed, embedded in plastic resin, and sliced with a diamond knife into ultrathin sections, usually only 40 nm thick. The first author of the study, Réza Shahidi, sectioned an entire larva of the marine annelid Platynereis dumerilii into 5,000 sections.

Each section is then imaged at a very high resolution, allowing the identification of all membranes and synapses. The neurons can be followed throughout the sections, allowing the reconstruction of entire neuronal circuits. This recontsruction does not yet contain information about the signaling molecules the neurons communicate with.

There are some techniques that allow researchers to assign small molecules to neurons at EM resolution. However, these techniques require the expression of special ‘tags’ in defined neurons by means of transgenesis, limiting the use of these techniques to one or a few markers per individual. Some of these technologies also lack optimal resolution and proper contrast for EM studies.

Jékely and his team identified a diverse class of neuropeptides that survive the fixation and processing treatment for EM. These neuropeptides can be tagged by specific antibodies coupled to gold particles. Dr. Jékely's team demonstrated the utility of the siGOLD method by identifying and reconstructing over 80 neurons using 11 different antibodies on the Platynereis larval sections.

Original Publication:
Réza Shahidi, Elizabeth A. Williams, Markus Conzelmann, Albina Asadulina, Csaba Verasztó, Sanja Jasek, Luis A. Bezares-Calderón and Gáspár Jékely: A Serial Multiplex Immunogold Labeling Method for Identifying Peptidergic Neurons in Connectomes. Published December 15, 2015
Cite as eLife 2015;10.7554/eLife.11147

Gáspár Jékely
Max-Planck-Institut für Entwicklungsbiologie
Tel.: 07071 601-1310

Nadja Winter
Press officer (Public Relations)
Phone: +49 7071 601- 444

Printable images can be obtained at the Public Relations Office. Please send a proof upon publication.

About us:
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 360 people and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

Weitere Informationen:

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>