Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Speeds Up Development of Medication

26.03.2018

UZH researchers have developed a novel method that speeds up the process of determining crystal structures of organic salts and significantly reduces the effort required to do so. As about 40 percent of all active pharmaceutical ingredients are salts, this new crystallographic method is set to greatly accelerate drug development.

One of the key steps in developing new drugs is determining the atomic structure of its biologically active substances. This generally involves performing X-ray analyses of single crystal structures to determine the ingredient’s detailed three-dimensional set-up. However, growing suitable single crystals is often a complex and time-consuming process.


In the laboratory of Bernhard Spingler (r.), trainee Philipp Nievergelt (l.) made an important contribution to determine the crystal structures of organic salts faster and easier.

UZH

Determining crystal structures more quickly and efficiently

A research group headed up by Bernhard Spingler, professor at the Department of Chemistry of the University of Zurich, has now modified a method that had previously been used exclusively for the crystallization of proteins, and successfully applied it to organic salts. The team was able to determine the crystal structures of several organic salts with significantly less time and effort. “As organic salts make up about 40 percent of all active pharmaceutical ingredients, this new method can greatly speed up the development of drugs,” says Spingler.

Simplified screening of organic salts

The generation of solid salts of organic molecules is a key step in developing certain pharmaceutical ingredients. The positively and negatively charged particles that make up organic salts determine their properties, such as their solubility, crystal shape, ability to absorb water, melting point, and stability. The search for the ideal negatively charged anion to match the salt’s positively charged cation has until now been a very resource-intensive process.

Thanks to the semi-automatic combination of ion exchange screening and vapor diffusion for crystallization, this is not only done quicker and at lower costs. “We can now also determine the structures of the salt combinations directly after screening, since doing so only requires only very small amounts,” adds crystallography expert Spingler.

Trainee achieves breakthrough

The breakthrough in developing the novel method was achieved by Philipp Nievergelt, a trainee who had spent 10 months in Bernhard Spingler’s lab after graduating from Gymnasium. The successful junior researcher is listed as first author of the study and is now four semesters into his business chemistry studies at UZH. “The traineeship got me excited about lab work and encouraged me to continue doing research,” explains Nievergelt.

Literature:
Philipp P. Nievergelt, Martin Babor, Jan Čejka, Bernhard Spingler. A high throughput screening method for the nano-crystallization of salts of organic cations. Chemical Science. March 12, 2018. DOI: 10.1039/C8SC00783G

Contact:
Prof. Bernhard Spingler, PhD
Department of Chemistry
University of Zurich
Phone +41 44 635 46 56
E-mail: spingler@chem.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2018/crystal-structures-organic-salts....

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

One step closer to reality

20.04.2018 | Life Sciences

The dark side of cichlid fish: from cannibal to caregiver

20.04.2018 | Life Sciences

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>