Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New metabolic mechanisms discovered that regulate the macrophage's role in immune response

18.03.2015

A group of researchers from Washington University in St. Louis, Agios Pharmaceuticals and ITMO University has discovered new metabolic mechanisms that regulate macrophage polarization - the unique ability of these immune cells to change their specialization depending on the required task. The research opens new possibilities for the development of a new class of drugs based on controlling the metabolism of immune cells. The results were published today in the Immunity journal.

One of the key properties of macrophages is their ability to assume different states in accordance with the environmental factors. For example, resident macrophages (M0) can undergo classical activation and transform into proinflammatory macrophages (M1) that by all means seek to destroy pathogens.


This is a map of macrophage metabolism.

Credit: Alexey Sergushichev

There exists, however, an alternative activation procedure, wherein macrophages acquire an anti-inflammatory healing function (M2). Understanding these processes is extremely important for understanding the immune system as a whole as well as for fighting autoimmune diseases.

Macrophage polarization is accompanied by changes on both transcriptional and metabolic levels. Activation significantly alters the expression of some genes and the concentration of used and produced compounds. While some aspects of activation are known, until recently, the big picture remained elusive.

To study macrophage polarization, the scientists developed the method of non-targeted analysis of metabolic changes based on data obtained from the simultaneous use of RNA sequencing and high-throughput mass spectrometry of metabolites. The researchers combined the data on the basis of the network of biochemical reactions, which allowed them to identify the most significant of the ongoing reactions.

The final set of reactions revealed unknown metabolic mechanisms associated with macrophage polarization. Based on this information, the scientists determined the most probable metabolic pathways that manifest themselves in classical and alternative activations.

The pathways were confirmed using 13C and 15N isotope labeling and pharmacological inhibition experiments. One of the new mechanisms described in the work is the dependence of alternative macrophage activation on glutamine concentration in the environment, which regulates the activity of TCA cycle, and the synthesis of UDP-Glc-Nac - the compound necessary for post-translational protein modification.

"We developed a method of simultaneous analysis of metabolic and transcriptional data. The method proved to be effective and, most importantly, yielded a concrete biological result. Now we continue to improve the method and apply it to other biological tasks such as studying cancer metabolism," says Alexey Sergushichev, PhD student at Computer Technologies Department of ITMO University.

In the long run, the ability to regulate pro- and anti-inflammatory activity can lead to the creation of a new class of drugs based on controlling the metabolism of immune cells. For the first time, macrophage polarization was described in such detail and on such a scale. The work made it possible not only to reveal new regulatory mechanisms of polarization, but also identify and describe the global restructuration of metabolic pathways during polarization. The researchers hope their work will give new impetus to the investigation of pharmacological potential of polarization regulators, which also represents the next step in the collaborative work of the group.

###

The press office of ITMO University thanks Alexey Sergushichev and Maxim Artyomov for their help in preparing this press release.

Dmitry Malkov | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>