Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016

Defying frost and the cold with hormones

Plants cannot simply relocate to better surroundings when their environmental conditions are no longer suitable. Instead, they have developed sophisticated molecular adaptation mechanisms. Scientists at the Technical University Munich (TUM) in cooperation with the Helmholtz Center Munich and the University of Nottingham have been able to demonstrate that brassinosteroids, which until now have mainly been regarded as growth hormones, increase the resistance of plants against frost.


Pictured are frozen flowers of an apple tree in South Tyrol, Italy that have been protected from damage by late frost with frost-protection sprinkling. Eremina et al show that in the freezing tolerance of plants steroid hormones take part, and elucidate molecular pathways, which contribute to this activity. (Photo: courtesy of D. Mitterer-Zublasing)

"Stress caused by cold is an environmental influence which has a direct effect on the growth and yield of plants", says plant molecular biologist Professor Brigitte Poppenberger. With her research group at the Biotechnology of Horticultural Crops institute at the TUM, she investigates the mechanisms used by plants to adapt to external influences. Her research activities have centered on brassinosteroids for quite some time.

In earlier work, her group already used common thale cress (Arabidopsis thaliana) as a model plant to demonstrate exactly how this plant hormone, which was identified for the first time in rapeseed in 1979, promotes plant growth. In fact, it had been known for a long time that this hormone plays a role in plant development. However, the exact mechanism of action was unknown. It was the work of the biotechnology experts at the TUM School for Life Sciences in Weihenstephan that first made it possible to gain a precise understanding of this phenomenon.

It's no coincidence that Brigitte Poppenbergers team once again picked Arabidopsis for the current study. Due to its relatively undemanding nature, simple structure, and its compact size, it isn't simply a favorite among geneticists in general—the tiny herb also provides optimal conditions under which to search for cold protection mechanisms in plants, as it's able to survive low temperatures and increase its tolerance to frost by adapting to the cold. In the current issue of the specialist journal "Proceedings of the National Academy of Sciences" (PNAS), the scientists describe the hitherto unknown side of brassinosteroids, which up until now have been known as growth hormones.

In order to gain a detailed understanding of their mechanisms, the researchers carried out experiments in which they exposed Arabidopsis plants to slowly decreasing temperatures. Experiments with wild-type varieties in the laboratory showed that as the temperature decreases, the plant reacts by beginning to modify the expression of genes for which DNA is transcribed to RNA within its cells. "This reduces its growth, which increases its chances of survival", Poppenberger explains, describing the natural protective mechanism of the normal plants.

A molecular path to 'winter fat'

The researchers obtained a different result with their experiments involving genetically modified model plants, which are no longer able to synthesize brassinosteroids themselves or recognize them as a signal. While wild-type varieties often still managed to survive temperatures of six degrees below zero, most of the mutants already displayed clear signs of damage at this point, which demonstrates the essential role steroid hormones play in this process. By analyzing the process, the researchers found that brassinosteroids increase frost resistance by regulating a protein called CESTA. This protein uses a signal cascade to control gene expression. In this manner, it in turn influences the protein composition of the cells, which among other things appears to lead to a change in the fatty acid composition. This ensures that the plant stocks up on a type of 'winter fat' on a molecular level, thereby protecting it from potential cold damage.

Spray-on steroids for plants

These exact findings regarding the order and type of chemical processes for the effects of steroid hormones in plants are not only an important step forward for basic research into the adaptation strategies of plants. More importantly, according to the researchers, they may also provide solutions to problems, which have occurred in agriculture as a result of climate change. Although people generally only associate global warming with an increased occurrence of hot periods, it also causes an increase in the number of frost events, such as early and late frosts, which can lead to devastating harvest shortfalls. "The conventional method of breeding more resistant plants has not been very successful so far, as resistance to cold and reduced growth are difficult to separate", says Brigitte Poppenberger. But she's convinced that "our discovery that brassinosteroids boost both growth and cold resistance will open up new possibilities for bringing out both characteristics in plants." She asserts that it's also possible to spray crop plants with brassinosteroids to achieve both effects. "That may be a viable method—at least, that's what the findings suggest."

Publication:
Marina Eremina , Simon J. Unterholzner, Ajith I. Rathnayake , Marcos Castellanos , Sean T. May, Klaus F. X. Mayer, Wilfried Rozhon and Brigitte Poppenberger: Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants, PNAS 2016. doi: 10.1073/pnas.1611477113

Contact:
Technical University of Munich
Biotechnology of Horticultural Crops
Prof. Dr. Brigitte Poppenberger
Tel.: +49 8161 71-2401
brigitte.poppenberger@wzw.tum.de
http://www.bgk.wzw.tum.de/index.php?id=2&L=1

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33364/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Arabidopsis Horticultural PNAS TUM hormones steroid hormones tolerance

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>