Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016

Defying frost and the cold with hormones

Plants cannot simply relocate to better surroundings when their environmental conditions are no longer suitable. Instead, they have developed sophisticated molecular adaptation mechanisms. Scientists at the Technical University Munich (TUM) in cooperation with the Helmholtz Center Munich and the University of Nottingham have been able to demonstrate that brassinosteroids, which until now have mainly been regarded as growth hormones, increase the resistance of plants against frost.


Pictured are frozen flowers of an apple tree in South Tyrol, Italy that have been protected from damage by late frost with frost-protection sprinkling. Eremina et al show that in the freezing tolerance of plants steroid hormones take part, and elucidate molecular pathways, which contribute to this activity. (Photo: courtesy of D. Mitterer-Zublasing)

"Stress caused by cold is an environmental influence which has a direct effect on the growth and yield of plants", says plant molecular biologist Professor Brigitte Poppenberger. With her research group at the Biotechnology of Horticultural Crops institute at the TUM, she investigates the mechanisms used by plants to adapt to external influences. Her research activities have centered on brassinosteroids for quite some time.

In earlier work, her group already used common thale cress (Arabidopsis thaliana) as a model plant to demonstrate exactly how this plant hormone, which was identified for the first time in rapeseed in 1979, promotes plant growth. In fact, it had been known for a long time that this hormone plays a role in plant development. However, the exact mechanism of action was unknown. It was the work of the biotechnology experts at the TUM School for Life Sciences in Weihenstephan that first made it possible to gain a precise understanding of this phenomenon.

It's no coincidence that Brigitte Poppenbergers team once again picked Arabidopsis for the current study. Due to its relatively undemanding nature, simple structure, and its compact size, it isn't simply a favorite among geneticists in general—the tiny herb also provides optimal conditions under which to search for cold protection mechanisms in plants, as it's able to survive low temperatures and increase its tolerance to frost by adapting to the cold. In the current issue of the specialist journal "Proceedings of the National Academy of Sciences" (PNAS), the scientists describe the hitherto unknown side of brassinosteroids, which up until now have been known as growth hormones.

In order to gain a detailed understanding of their mechanisms, the researchers carried out experiments in which they exposed Arabidopsis plants to slowly decreasing temperatures. Experiments with wild-type varieties in the laboratory showed that as the temperature decreases, the plant reacts by beginning to modify the expression of genes for which DNA is transcribed to RNA within its cells. "This reduces its growth, which increases its chances of survival", Poppenberger explains, describing the natural protective mechanism of the normal plants.

A molecular path to 'winter fat'

The researchers obtained a different result with their experiments involving genetically modified model plants, which are no longer able to synthesize brassinosteroids themselves or recognize them as a signal. While wild-type varieties often still managed to survive temperatures of six degrees below zero, most of the mutants already displayed clear signs of damage at this point, which demonstrates the essential role steroid hormones play in this process. By analyzing the process, the researchers found that brassinosteroids increase frost resistance by regulating a protein called CESTA. This protein uses a signal cascade to control gene expression. In this manner, it in turn influences the protein composition of the cells, which among other things appears to lead to a change in the fatty acid composition. This ensures that the plant stocks up on a type of 'winter fat' on a molecular level, thereby protecting it from potential cold damage.

Spray-on steroids for plants

These exact findings regarding the order and type of chemical processes for the effects of steroid hormones in plants are not only an important step forward for basic research into the adaptation strategies of plants. More importantly, according to the researchers, they may also provide solutions to problems, which have occurred in agriculture as a result of climate change. Although people generally only associate global warming with an increased occurrence of hot periods, it also causes an increase in the number of frost events, such as early and late frosts, which can lead to devastating harvest shortfalls. "The conventional method of breeding more resistant plants has not been very successful so far, as resistance to cold and reduced growth are difficult to separate", says Brigitte Poppenberger. But she's convinced that "our discovery that brassinosteroids boost both growth and cold resistance will open up new possibilities for bringing out both characteristics in plants." She asserts that it's also possible to spray crop plants with brassinosteroids to achieve both effects. "That may be a viable method—at least, that's what the findings suggest."

Publication:
Marina Eremina , Simon J. Unterholzner, Ajith I. Rathnayake , Marcos Castellanos , Sean T. May, Klaus F. X. Mayer, Wilfried Rozhon and Brigitte Poppenberger: Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants, PNAS 2016. doi: 10.1073/pnas.1611477113

Contact:
Technical University of Munich
Biotechnology of Horticultural Crops
Prof. Dr. Brigitte Poppenberger
Tel.: +49 8161 71-2401
brigitte.poppenberger@wzw.tum.de
http://www.bgk.wzw.tum.de/index.php?id=2&L=1

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33364/

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Arabidopsis Horticultural PNAS TUM hormones steroid hormones tolerance

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>