Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New mechanism of inheritance could advance study of evolution, disease treatment


Results show that gene silencing can last for 25+ generations

For more than a century, scientists have understood the basics of inheritance: if good genes help parents survive and reproduce, the parents pass those genes along to their offspring. And yet, recent research has shown that reality is much more complex: genes can be switched off, or silenced, in response to the environment or other factors, and sometimes these changes can be passed from one generation to the next.

UMD scientists have discovered a mechanism for transgenerational gene silencing in the roundworm Caenorhabditis elegans. Special fluorescent dyes help to visualize neurons (magenta) and germ cells (green) in the roundworm's body.

Credit: Photo: Sindhuja Devanapally

The phenomenon has been called epigenetic inheritance, but it is not well understood. Now, UMD geneticist Antony Jose and two of his graduate students are the first to figure out a specific mechanism by which a parent can pass silenced genes to its offspring. Importantly, the team found that this silencing could persist for multiple generations--more than 25, in the case of this study.

The research, which was published in the Feb. 2, 2015 online early edition of the Proceedings of the National Academy of Sciences, could transform our understanding of animal evolution. Further, it might one day help in the design of treatments for a broad range of genetic diseases.

"For a long time, biologists have wanted to know how information from the environment sometimes gets transmitted to the next generation," said Jose, an assistant professor in the UMD Department of Cell Biology and Molecular Genetics. "This is the first mechanistic demonstration of how this could happen. It's a level of organization that we didn't know existed in animals before."

Jose and graduate students Sindhuja Devanapally and Snusha Ravikumar worked with the roundworm Caenorhabditis elegans, a species commonly used in lab experiments. They made the worms' nerve cells produce molecules of double-stranded RNA (dsRNA) that match a specific gene. (RNA is a close relative of DNA, and has many different varieties, including dsRNA.) Molecules of dsRNA are known to travel between body cells (any cell in the body except germ cells, which make egg or sperm cells) and can silence genes when their sequence matches up with the corresponding section of a cell's DNA.

The team's biggest finding was that dsRNA can travel from body cells into germ cells and silence genes within the germ cells. Even more surprising, the silencing can stick around for more than 25 generations. If this same mechanism exists in other animals--possibly including humans--it could mean that there is a completely different way for a species to evolve in response to its environment.

"This mechanism gives an animal a tool to evolve much faster," Jose said. "We still need to figure out whether this tool is actually used in this way, but it is at least possible. If animals use this RNA transport to adapt, it would mean a new understanding of how evolution happens."

The long-term stability of the silencing effect could prove critical in developing treatments for genetic diseases. The key is a process known as RNA interference, more commonly referred to as RNAi. This process is how dsRNA silences genes in a cell. The same process has been studied as a potential genetic therapy for more than a decade, because you can target any disease gene with matching dsRNA. But a main obstacle has been achieving stable silencing, so that the patient does not need to take repeated high doses of dsRNA.

"RNAi is very promising as a therapy, but the efficacy of the treatment declines over time with each new cell division," Jose said. "This particular dsRNA, from C. elegans nerve cells, might have some chemical modifications that allow stable silencing to persist for many generations. Further study of this molecule could help solve the efficacy problem in RNAi therapy."

Jose acknowledges the large gap between roundworms and humans. Unlike simpler animals, mammals have known mechanisms that reprogram silenced genes every generation. On the surface, it would seem as though this would prevent epigenetic inheritance from happening. And yet, previous evidence suggests that the environment may be able to cause some sort of transgenerational effect in mammals as well. Jose believes that his team's work provides a promising lead in the search for how this happens.

"This is a fertile research field that will keep us busy for 10 years or more into the future," Jose said. "The goal is to achieve a very clear understanding--in simple terms--of all the tools an animal can use to evolve."


This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health (Award Nos. R00GM085200 and R01GM111457). The content of this article does not necessarily reflect the views of this organization.

The research paper, "Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing," Sindhuja Devanapally, Snusha Ravikumar and Antony M. Jose, was published online in the Feb. 2, 2015 early edition of the journal Proceedings of the National Academy of Sciences.

Media Relations Contact: Matthew Wright, 301-405-9267,

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742

About the College of Computer, Mathematical, and Natural Sciences?

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright


Matthew Wright | EurekAlert!

Further reports about: RNA RNAi Sciences animals elegans genes genetic diseases germ germ cells nerve cells silencing

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>