Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New many-toothed clingfish discovered with help of digital scans

18.04.2017

A set of curious researchers, state-of-the-art visual technology and a bit of good luck helped find a new fish whose tooth collection could put a shark to shame.

Scientists at the University of Washington, Texas A&M University and the Western Australian Museum have discovered and named a new genus and species of clingfish after stumbling upon a specimen preserved in a jar dating back to the 1970s. The fish was unmistakably different from the other 160 known clingfishes, named for the disc on their bellies that can summon massive sticking power in wet, slimy environments.


The head of the duckbilled clingfish is shown.

Credit: Kevin Conway and Glenn Moore

The researchers named the new species "duckbilled clingfish" (Nettorhamphos radula) for its broad, flat snout ? not unlike the bill of a duck ? that houses an impressive number of tiny, conical teeth.

"This fish has characteristics we just haven't seen before in other clingfish. It's the teeth that really gave away the fact that this is a new species," said lead author Kevin Conway, a fish taxonomist and associate professor at Texas A&M University.

... more about:
»CT »fish species »new species »scans

A detailed description of the new genus and species was published April 14 in the journal Copeia.

Scientists, including co-author Adam Summers of the University of Washington's Friday Harbor Laboratories, are interested in clingfish for their ability to stick to rough surfaces. The finger-sized fish uses suction forces to hold up to 150 times its own body weight. Understanding the biomechanics of these fish could be useful in designing devices and instruments to be used in surgery, or to tag and track whales in the ocean.

Conway and co-author Glenn Moore of Western Australian Museum discovered the new clingfish while looking through specimens preserved in jars at the museum in Welshpool, Australia. It's common for unknown specimens collected during surveys to be registered and shelved until an expert has the time, and interest, to take a closer look. This specimen was caught off the coast of Southern Australia in 1977. Even though the fish is only as big as a pinky finger, its unique teeth structure caught their attention.

A couple of hours later, Moore found yet another specimen with similar features on the museum shelves. Together, the specimens are thought to be the only two of this new species that exist out of water.

"A discovery like this highlights the importance of museum collections and reminds us just how much lies waiting to be uncovered," Moore said. "Finding a previously unknown specimen in a jar is exciting, but our collections of identified specimens are equally important so that we have something to compare against."

The researchers suspected they had discovered a new species that represented a new genus of clingfish, given the unusual mouth structure and teeth arrangement, but they were faced with a conundrum: Naming a new species requires an intact, complete fish with good documentation of its morphology and clear distinctions from other species. With only two known specimens, dissection was out of the question.

Instead they turned to Summers, who studies clingfish and is actively working to scan and digitize every fish species in the world using a computerized tomography (CT) scanner. Each completed scan is housed on Open Science Framework.

Using the scanner, the scientists were able to capture even finer details of the new clingfish than would be possible through manual dissection. They also used the digital scans to 3-D print parts of the fish in larger-than-life size to be able to analyze the mouth and jaw structures.

"This CT scan allowed us to take a completely noninvasive look at the entire skeleton of the fish, and it produced a gorgeous set of morphological photos that you couldn't get from dissection," Summers said. "It's a testament to the importance of using these noninvasive methods of data collection."

The scans allowed the researchers to hone in on the fish's skeletal structure from many different angles and essentially digitally dissect parts of the fish. They estimate the tiny fish has between 1,800 to 2,300 individual teeth ? or 10 times what all other known clingfish have. The teeth point backward, which would suggest a gripping function, Conway said, but the researchers can't be sure since the fish has never been observed in the wild.

The duckbilled clingfish joins the ranks of hundreds of new fish species that are described each year. It's more unusual for these new species to be placed into a new genus ? in this case, the fish's wider and longer upper jaw and abundance of tiny, dagger-like conical teeth were the sure signs of a brand-new genus.

The researchers are particularly pleased to have discovered a new clingfish in a region of Southern Australia that is known for its clingfish diversity and abundance.

"I think it's remarkable that we would add to this diversity with yet another new genus," Conway said. "It's pretty special given this fauna is already pretty well-studied."

###

This work was funded by the National Science Foundation.

For more information, contact Summers at fishguy@uw.edu or 301-864-1491; Conway at kevin.conway@tamu.edu or 979-845-2620; and Moore at glenn.moore@museum.wa.gov.au or 61-8-9212-3744 (in Australia).

Related paper: http://www.asihcopeiaonline.org/doi/abs/10.1643/CI-16-560

Follow the #ScanAllFishes project on Twitter: https://twitter.com/hashtag/scanallfishes?lang=en

Duckbilled clingfish images: https://flic.kr/s/aHskSN9Mj3

B-roll available: https://www.dropbox.com/s/cthxo6qipok7eqv/new%20clingfish%20for%20tv.mp4?dl=0

Michelle Ma | EurekAlert!

Further reports about: CT fish species new species scans

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>