Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lab technique reveals structure and function of proteins critical in DNA repair

20.04.2015

By combining two highly innovative experimental techniques, scientists at the University of Illinois at Urbana-Champaign have for the first time simultaneously observed the structure and the correlated function of specific proteins critical in the repair of DNA, providing definitive answers to some highly debated questions, and opening up new avenues of inquiry and exciting new possibilities for biological engineering.

Scientists who study biological systems at the molecular level have over the years looked to the structure of protein molecules--how the atoms are organized--to shed light on the diverse functions each performs in the cell. The inverse is also true: observing the specific work particular protein molecules perform has provided important clues as to the conformation of the respective molecules. But until recently, our most advanced laboratory experiments could only investigate one at a time--static form or dynamic function--and from the results, deduce the other. This indirect method often doesn't provide definitive answers.


The DNA repair helicase UvrD can exist in an "open" (green, blue, cyan, and gray colored protein, upper right) or "closed" (middle) conformation. An instrument combining optical traps (red cones) and a single-molecule fluorescence microscope (green) is used to measure directly the relationship between these two structural states and their respective functions on DNA.

Credit: Matt Comstock, University of Illinois at Urbana-Champaign

Now Illinois biological physicists Taekjip Ha and Yann Chemla have combined two cutting-edge laboratory techniques that together directly get at the structure-function relationship in proteins. Ha is well recognized for his innovative single molecule fluorescence microscopy and spectroscopy techniques. Chemla is a top expert in optical trapping techniques. Their combined method--simultaneous fluorescence microscopy and optical trapping--yields far more definitive answers to questions relating structure to function than either technique could independently.

Working in collaboration, Ha and Chemla each applied the above techniques in their laboratories, with conclusive results. The findings of these experiments have been published in two separate articles in the April 17 issue of the journal Science.

Chemla's lab team looked at the structure-function relationship in the helicase UvrD, a protein, found in the bacterium E. coli, that separates strands of DNA in need of repair by unwinding and unzipping them. There is an equivalent protein that performs the same vital process in humans. The first question Chemla's team investigated was how many UvrD proteins are required to perform this task--recent debates among scientists have the number at either one or two.

"The way we answered this," explains Chemla, "we put a dye molecule on each protein with fluorescence--so we could count them. Then we watched the unwinding with an optical trap. We found that a single UvrD helicase can do something--it unwinds the DNA, but not very far. It just goes back and forth a small distance, so we call it 'frustrated'. When we have two UvrD molecules, it seems to unwind much further and doesn't go back and forth as much."

Chemla's team also resolved one question on the structure-function relationship in UvrD. There are two distinct structures or states that are associated with UvrD, with the molecule organized in either an "open" or "closed" position. The function associated with each state has been debated among experts for several years.

"This time, we used smFRET (single-molecule fluorescence resonance energy transfer). We put two dyes on the molecule, and based on the distance between them, we could see one or another color of light, indicating whether the molecule was in the open or closed position. Then we used an optical trap to observe whether the molecule was unwinding the double-stranded DNA.

"We found that the molecules actually swiveled from open to closed and back again. As it turns out, the closed state unwinds the strands, using a torque wrench action. The open state allows the strands to zip together."

This work is published in the article "Engineering of a superhelicase through conformational control" in Science (April 17, 2015, v. 348, no. 6232, pp. 352-354; DOI: 10.1126/science.aaa0130).

In Ha's laboratory, the team engineered a structurally homologous helicase protein called Rep, fastening it in either the closed or the open state by using a cross-linking molecule as "tape."

The team found that when locked in the closed position, it becomes a "superhelicase" capable of unwinding double-stranded DNA over a great distance. Locked in the open position, the helicase was defunct--it performed no task.

The ability to bioengineer molecules to perform specific tasks holds promise for applications, including rapid DNA sequencing with nanopore technology.

Ha comments, "The superhelicase we engineered based on our basic, fundamental understanding of helicase function can be used as a powerful biotechnological tool for sensitive detection of pathogenic DNA in remote areas, for example."

The team repeated the experiment on another structurally homologous helicase protein called PcrA, with the same result. Here, the team was further able to show how another protein that interacts with PcrA and is known to contribute to its effectiveness physically achieves that purpose. The team was able to demonstrate that the addition of the protein locked PcrA in the closed state.

"Proteins are flexible," explains Chemla. "Each may serve multiple functions. The presence of other proteins can determine which function is active by changing its structure."

###

This work is published in the article "Engineering of a superhelicase through conformational control" in Science (April 17, 2015, v. 348, no. 6232, pp. 344-347; DOI: 10.1126/science.aaa0445).

Siv Schwink | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>