Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Insights on Cellular Nutrient Supply in Model Organism Baker’s Yeast


Heidelberg researchers characterise a mostly unknown yeast protease – an enzyme playing a major role in transporting nutrients

Heidelberg researchers have gained new insights on the function of a presenilin-related protein in the model organism baker’s yeast with regard to the regulation of the cells’ nutrient supply: This membrane protein is a protease called Ypf1.

It regulates the amount of nutrient transporters making it to the cell surface and controls the absorption of nutrients from the cell’s environment as could be shown by the researchers around Dr. Marius Lemberg of Heidelberg University’s Center for Molecular Biology.

In humans, the related presenilin-1 gene, when mutated, is one of the factors which lead to a hereditary early-onset and severe form of Alzheimer’s disease, as Dr. Lemberg says. The scientist collaborated with colleagues in Rehovot, Munich and Freiburg. Their results were published in the journal “Molecular Cell”.

When Dr. Lemberg's team started its work it was only known that Ypf1 belongs to an unusual class of membrane proteases. These proteases are enzymes that are able to cleave peptide chains within cellular membranes. However, despite massive knowledge from yeast genetics as well as recently developed biochemical assays, Ypf1’s function in this process remained in the dark.

“Since proteases like Ypf1 are working at the crossroads of essential cellular processes, their physiological tasks and the study of their substrates are an important research field,” says Dr. Lemberg, who closely collaborated with Dr. Maya Schuldiner of the Weizmann Institute of Science in Rehovot (Israel).

The breakthrough in understanding Ypf1 came with quantitative studies of the proteome, i.e. all the proteins in the cell. In the course of these experiments the researchers observed that in the absence of the Ypf1 protease, a high-affinity zinc transporter accumulates in individual fractions of the cell membrane.

Moreover, with the help of systematic approaches the researchers were able to demonstrate that Ypf1 generally regulates how many of these nutrient transporters reach the cell surface. Thus, the protease controls the way in which nutrients are being taken up from the environment. The molecular biologists also proved that Ypf1 cooperates directly with components of the so-called ER-associated degradation pathway (ERAD) to dispose of surplus transporter proteins.

According to Dr. Lemberg, the Ypf1 protease also enables yeast cells to “sense” changes in the nutrition level and to react when the supply of nutrients declines and limitations of cell functions are imminent. The reduction of transporters is then being suspended. “The Ypf1 protease allows yeast cells to prepare themselves for starvation.

This process is as important for unicellular organisms as a functional brain is for animals,” emphasises the Heidelberg researcher. As Dr. Lemberg says, these new insights form the basis for a molecular understanding of how cells control the composition of their membranes. The scientists hope to be also able to draw conclusions about the origin of human diseases, such as the hereditary early-onset form of Alzheimer’s.

The research group of Dr. Lemberg is a member of the DKFZ-ZMBH Alliance, the strategic collaboration between the German Cancer Research Center (DKFZ) and the Center for Molecular Biology of Heidelberg University (ZMBH). The research was funded in the framework of the Network Aging Research of the Baden-Württemberg Foundation as well as the university’s Collaborative Research Centre “Cellular Surveillance and Damage Response” (CRC 1036). In addition to the research team of Dr. Schuldiner, scientists of the German Center for Neurodegenerative Diseases in Munich and of the University of Freiburg have significantly contributed to this project.

Original publication:
D. Avci, S. Fuchs, B. Schrul, A. Fukumori, M. Breker, I. Frumkin, C. Chen, M.L. Biniossek, E. Kremmer, O. Schilling, H. Steiner, M. Schuldiner and M.K. Lemberg (2014) The Yeast ER-Intramembrane Protease Ypf1 Refines Nutrient Sensing by Regulating Transporter Abundance. Molecular Cell 56, 630-640 (4 December 2014), doi:10.1016/j.molcel.2014.10.012

Dr. Marius Lemberg
Center for Molecular Biology of Heidelberg University
Phone: +49 6221 54-5889

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Weitere Informationen:

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>