Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights on Cellular Nutrient Supply in Model Organism Baker’s Yeast

05.12.2014

Heidelberg researchers characterise a mostly unknown yeast protease – an enzyme playing a major role in transporting nutrients

Heidelberg researchers have gained new insights on the function of a presenilin-related protein in the model organism baker’s yeast with regard to the regulation of the cells’ nutrient supply: This membrane protein is a protease called Ypf1.

It regulates the amount of nutrient transporters making it to the cell surface and controls the absorption of nutrients from the cell’s environment as could be shown by the researchers around Dr. Marius Lemberg of Heidelberg University’s Center for Molecular Biology.

In humans, the related presenilin-1 gene, when mutated, is one of the factors which lead to a hereditary early-onset and severe form of Alzheimer’s disease, as Dr. Lemberg says. The scientist collaborated with colleagues in Rehovot, Munich and Freiburg. Their results were published in the journal “Molecular Cell”.

When Dr. Lemberg's team started its work it was only known that Ypf1 belongs to an unusual class of membrane proteases. These proteases are enzymes that are able to cleave peptide chains within cellular membranes. However, despite massive knowledge from yeast genetics as well as recently developed biochemical assays, Ypf1’s function in this process remained in the dark.

“Since proteases like Ypf1 are working at the crossroads of essential cellular processes, their physiological tasks and the study of their substrates are an important research field,” says Dr. Lemberg, who closely collaborated with Dr. Maya Schuldiner of the Weizmann Institute of Science in Rehovot (Israel).

The breakthrough in understanding Ypf1 came with quantitative studies of the proteome, i.e. all the proteins in the cell. In the course of these experiments the researchers observed that in the absence of the Ypf1 protease, a high-affinity zinc transporter accumulates in individual fractions of the cell membrane.

Moreover, with the help of systematic approaches the researchers were able to demonstrate that Ypf1 generally regulates how many of these nutrient transporters reach the cell surface. Thus, the protease controls the way in which nutrients are being taken up from the environment. The molecular biologists also proved that Ypf1 cooperates directly with components of the so-called ER-associated degradation pathway (ERAD) to dispose of surplus transporter proteins.

According to Dr. Lemberg, the Ypf1 protease also enables yeast cells to “sense” changes in the nutrition level and to react when the supply of nutrients declines and limitations of cell functions are imminent. The reduction of transporters is then being suspended. “The Ypf1 protease allows yeast cells to prepare themselves for starvation.

This process is as important for unicellular organisms as a functional brain is for animals,” emphasises the Heidelberg researcher. As Dr. Lemberg says, these new insights form the basis for a molecular understanding of how cells control the composition of their membranes. The scientists hope to be also able to draw conclusions about the origin of human diseases, such as the hereditary early-onset form of Alzheimer’s.

The research group of Dr. Lemberg is a member of the DKFZ-ZMBH Alliance, the strategic collaboration between the German Cancer Research Center (DKFZ) and the Center for Molecular Biology of Heidelberg University (ZMBH). The research was funded in the framework of the Network Aging Research of the Baden-Württemberg Foundation as well as the university’s Collaborative Research Centre “Cellular Surveillance and Damage Response” (CRC 1036). In addition to the research team of Dr. Schuldiner, scientists of the German Center for Neurodegenerative Diseases in Munich and of the University of Freiburg have significantly contributed to this project.

Original publication:
D. Avci, S. Fuchs, B. Schrul, A. Fukumori, M. Breker, I. Frumkin, C. Chen, M.L. Biniossek, E. Kremmer, O. Schilling, H. Steiner, M. Schuldiner and M.K. Lemberg (2014) The Yeast ER-Intramembrane Protease Ypf1 Refines Nutrient Sensing by Regulating Transporter Abundance. Molecular Cell 56, 630-640 (4 December 2014), doi:10.1016/j.molcel.2014.10.012

Contact:
Dr. Marius Lemberg
Center for Molecular Biology of Heidelberg University
Phone: +49 6221 54-5889
m.lemberg@zmbh-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de


Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/lemberg

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>