Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights on Cellular Nutrient Supply in Model Organism Baker’s Yeast

05.12.2014

Heidelberg researchers characterise a mostly unknown yeast protease – an enzyme playing a major role in transporting nutrients

Heidelberg researchers have gained new insights on the function of a presenilin-related protein in the model organism baker’s yeast with regard to the regulation of the cells’ nutrient supply: This membrane protein is a protease called Ypf1.

It regulates the amount of nutrient transporters making it to the cell surface and controls the absorption of nutrients from the cell’s environment as could be shown by the researchers around Dr. Marius Lemberg of Heidelberg University’s Center for Molecular Biology.

In humans, the related presenilin-1 gene, when mutated, is one of the factors which lead to a hereditary early-onset and severe form of Alzheimer’s disease, as Dr. Lemberg says. The scientist collaborated with colleagues in Rehovot, Munich and Freiburg. Their results were published in the journal “Molecular Cell”.

When Dr. Lemberg's team started its work it was only known that Ypf1 belongs to an unusual class of membrane proteases. These proteases are enzymes that are able to cleave peptide chains within cellular membranes. However, despite massive knowledge from yeast genetics as well as recently developed biochemical assays, Ypf1’s function in this process remained in the dark.

“Since proteases like Ypf1 are working at the crossroads of essential cellular processes, their physiological tasks and the study of their substrates are an important research field,” says Dr. Lemberg, who closely collaborated with Dr. Maya Schuldiner of the Weizmann Institute of Science in Rehovot (Israel).

The breakthrough in understanding Ypf1 came with quantitative studies of the proteome, i.e. all the proteins in the cell. In the course of these experiments the researchers observed that in the absence of the Ypf1 protease, a high-affinity zinc transporter accumulates in individual fractions of the cell membrane.

Moreover, with the help of systematic approaches the researchers were able to demonstrate that Ypf1 generally regulates how many of these nutrient transporters reach the cell surface. Thus, the protease controls the way in which nutrients are being taken up from the environment. The molecular biologists also proved that Ypf1 cooperates directly with components of the so-called ER-associated degradation pathway (ERAD) to dispose of surplus transporter proteins.

According to Dr. Lemberg, the Ypf1 protease also enables yeast cells to “sense” changes in the nutrition level and to react when the supply of nutrients declines and limitations of cell functions are imminent. The reduction of transporters is then being suspended. “The Ypf1 protease allows yeast cells to prepare themselves for starvation.

This process is as important for unicellular organisms as a functional brain is for animals,” emphasises the Heidelberg researcher. As Dr. Lemberg says, these new insights form the basis for a molecular understanding of how cells control the composition of their membranes. The scientists hope to be also able to draw conclusions about the origin of human diseases, such as the hereditary early-onset form of Alzheimer’s.

The research group of Dr. Lemberg is a member of the DKFZ-ZMBH Alliance, the strategic collaboration between the German Cancer Research Center (DKFZ) and the Center for Molecular Biology of Heidelberg University (ZMBH). The research was funded in the framework of the Network Aging Research of the Baden-Württemberg Foundation as well as the university’s Collaborative Research Centre “Cellular Surveillance and Damage Response” (CRC 1036). In addition to the research team of Dr. Schuldiner, scientists of the German Center for Neurodegenerative Diseases in Munich and of the University of Freiburg have significantly contributed to this project.

Original publication:
D. Avci, S. Fuchs, B. Schrul, A. Fukumori, M. Breker, I. Frumkin, C. Chen, M.L. Biniossek, E. Kremmer, O. Schilling, H. Steiner, M. Schuldiner and M.K. Lemberg (2014) The Yeast ER-Intramembrane Protease Ypf1 Refines Nutrient Sensing by Regulating Transporter Abundance. Molecular Cell 56, 630-640 (4 December 2014), doi:10.1016/j.molcel.2014.10.012

Contact:
Dr. Marius Lemberg
Center for Molecular Biology of Heidelberg University
Phone: +49 6221 54-5889
m.lemberg@zmbh-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de


Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/lemberg

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>