Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the world of trypanosomes

23.08.2017

Such detailed images of the pathogen that causes sleeping sickness inside a host are unique so far: They illustrate the manifold ways in which the parasites move inside a tsetse fly. A research team from the University of Würzburg's Biocenter has presented the images.

Single specimens of the vermicular pathogens causing sleeping sickness swim inside the gut of the tsetse fly between blood cells which the fly has ingested from an infected mammal.


3D model of the proventriculus, a special organ of the tsetse fly: The distribution of the trypanosomes based on the fluorescent cell nuclei is shown in yellow.

(Picture: Chair of Zoology I/eLife)


Three-dimensional models of the swimming developmental stages of the trypanosomes. The structure of the flagella was also analysed.

(Picture: Chair of Zoology I/eLife)

This is where they start their week-long journey through the fly's internal organs. In other places, they have clustered together to form a teeming swarm so dense that nothing is visible of the fly's structures.

Trypanosomes are the pathogens responsible for sleeping sickness. Inside the fly's salivary gland, they attach to the epithelium in huge numbers while continuing to beat their flagella at high frequency. In this position, the parasites remain waiting until the tsetse fly bites a human or an animal to be released into the victim's blood stream with the saliva.

Habitats inside the fly where mapped three-dimensionally

A team of researchers from the Biocenter of Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, has captured these and other processes in high-resolution pictures and videos. What is more, they used light sheet microscopy to map all habitats of the parasites inside the fly in 3D.

"These images are unparalleled," Tim Krüger says. Thanks to the detailed images, the scientists are now able to take the surprisingly complex microenvironment of the trypanosomes into account when investigating the infectious disease in more detail. Krüger studies the parasites at the JMU’s Chair of Cell and Developmental Biology in the team of Professor Markus Engstler.

Lash-like protrusion serves as drive

Trypanosomes are protozoa that move with the help of flagella, which are lash-like appendages protruding from the cell. "They are highly dynamic and never stop the flagellar beating," Krüger explains. "This enables them to swim and navigate effectively in various environments." And the parasites are capable of doing so not only inside the fly, but also in the blood stream, in skin, fat tissue, the brain and other organs of humans and animals.

In a new publication in the journal eLife, the Würzburg team shows detailed 3D images of the trypanosomes' anatomy in all developmental stages inside the tsetse fly. They analysed the swimming behaviour in the different tissues and present among others imaging techniques that allow tracking and quantifying entire swarms of the pathogen inside the fly.

Swimming behaviour of the parasites inside the tsetse fly unclear

The JMU scientists want to use this new range of analysis options to examine the trypanosomes in more depth. Because it is still largely unclear how and on which ways the dangerous pathogens swim through the fly's body before infecting a human.

One strategy to combat sleeping sickness is to interrupt or prevent pathogen development already in the tsetse fly. "But this can only succeed if we know exactly how the trypanosomes behave inside the fly," Tim Krüger says.

Exploring "microswimming" effects

Physicists also have an interest in the high-resolution images from the Biocenter. "Our cooperation partners have a keen interest in this, because they are dealing with so-called 'microswimmers'," as Krüger explains. To be more precise, they are interested in the hydrodynamic effects of swimming motions at small scales, at the individual cell level and in collective swimming phenomena. This is a complex topic since the effects here are completely different from those of larger objects swimming in water.

In turn, the team of Professor Engstler hopes to glean important stimuli from physics: "If we have a better understanding of the interactions between parasites and hosts also at the physical level, we can develop new approaches to explain how the parasites adapt and how the infectious processes inside the hosts evolve."

Facts about sleeping sickness

Trypanosomes are wide-spread in sub-Saharan Africa. The protozoan parasites are transmitted by the bite of an infected tsetse fly. Each year, there are around 30,000 new infections. Initial symptoms include headaches and joint pains followed by confusion, seizures and other symptoms in later stages. Finally, the sufferers fall into a coma and die.

There are no vaccines available against the pathogens; the available drugs can have extreme side effects. So there is urgent demand for better medication to treat the disease. Trypanosomes not only infect humans. They also kill cattle, goats and other livestock thereby causing enormous damage: In some regions of Africa, livestock breeding is hardly possible due to the trypanosomes.

Link to the online publication

eLife is a multidisciplinary open-access journal which covers life science topics. The Würzburg videos and animations on the behaviour of the trypanosomes in tsetse flies are incorporated in the journal article: https://elifesciences.org/articles/27656

Schuster, S., Krüger, T., Subota, I., Thusek, S., Rotureau, B., Beilhack, A., Engstler, M. (2017): Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife, 15 August 2017, DOI: 10.7554/eLife.27656.001

Contact

Dr. Timothy Krüger, Chair of Zoology I (Cell and Developmental Biology), Biocenter, JMU, T +49 931 31-84277, tkrueger@biozentrum.uni-wuerzburg.de

Weitere Informationen:

http://www.zeb.biozentrum.uni-wuerzburg.de/ Website of the Chair of Zoology I, JMU

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: 3D blood stream fly parasites pathogens proventriculus trypanosome tsetse fly

More articles from Life Sciences:

nachricht Accelerated reactions in condensed bio-matter?
19.06.2018 | Heidelberger Institut für Theoretische Studien gGmbH

nachricht Kidney tumor: Genetic trigger discovered
19.06.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Kidney tumor: Genetic trigger discovered

19.06.2018 | Life Sciences

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>