Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the tree of life

19.10.2016

CAU microbiology delivers ground-breaking insights into evolution by studying transcription termination in archaea

In order to describe the diversity of life, science differentiates, for example, between the plant and animal kingdoms. Furthermore, life is also divided into three basic categories or domains: the first comprises organisms whose cells have a nucleus, the domain of the so-called Eukarya. The other two domains include, on the one hand, Archaea originally found in extreme environments, and on the other, Bacteria. Organisms belonging to these two domains do not have a cell nucleus.


The methane-producing type of Archaea, Methanosarcina mazei, is frequently used in microbiology as a model organism.

Image: Andrea Ulbricht

As such, the domain of Archaea has a special status, because it incorporates characteristics of both, Eukarya and Bacteria. Out of which of the two domains the eukaryotic cell developed – and thereby the higher organisms, including the vertebrates – during the course of evolution, has been a controversial topic to date. Strong, recently discovered findings indicate that Eukarya could have developed out of the domain of Archaea.

Researchers from the Institute of General Microbiology at Kiel University (CAU) now have been able to show that Archaea read /transcribe their genetic information to synthesize proteins in a very similar way to Eukarya. This supports the theory of the origin of Eukarya in the domain of Archaea. The new research results, from the team led by Professor Ruth Schmitz-Streit from Kiel University, together with Professor Rotem Sorek from the Weizmann Institute of Science in Rehovot, Israel, have just been published in the journal Nature Microbiology.

The key to these new discoveries lies in the investigation of transcription, i.e. the process of reading the genetic information. During this process, the so-called messenger ribonucleic acid (mRNA) is produced, whose job it is to implement the genetic information into proteins. With respect to these processes, the researchers investigated two types of Archaea, Methanosarcina mazei and Sulfolobus acidocaldarius, using genome-wide analyses.

The end of the transcription process in particular is revealing: here, Bacteria only have a very short end sequence, after the part responsible for coding the proteins. This study shows that Archaea, in contrast, have a long end sequence after the part responsible for coding the proteins in their mRNA similar to Eukarya. The supposedly uninvolved ends of the mRNA could also potentially contribute to gene regulation in Archaea. The scientists were also able to prove that over 30 percent of the genes in Archaea could be regulated by a series of consecutive alternative termination signals for transcription. Therefore, different lengths of end sequences are generated in response to environmental conditions.

On the one hand, the new discoveries highlight the evolutionary similarities between Archaea and Eukarya. On the other hand, they indicate that the long and variable end sequences of the Archaea must also serve a functional purpose. This opens up a whole new area of activity in microbiology, emphasised Schmitz-Streit: “Previously it was simply not known that Archaea have such long transcript end sequences. Firstly, this sheds light on the evolutionary development of life. More importantly, with researching their functions, we are blazing a new scientific trail, and are hoping to gain surprising new insights into regulation in Archaea on the post-transcriptional level.”

Original publication:
Daniel Dar, Daniela Prasse, Ruth A. Schmitz & Rotem Sorek (2016): Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nature Microbiology
http://dx.doi.org/10.1038/nmicrobiol.2016.143

Photos are available to download:
http://www.uni-kiel.de/download/pm/2016/2016-339-1.jpg
The methane-producing type of Archaea, Methanosarcina mazei, is frequently used in microbiology as a model organism.
Image: Andrea Ulbricht

Contact:
Prof. Ruth Schmitz-Streit
Molecular Biology of Microorganisms,
Institute of General Microbiology, Kiel University
Tel.: +49 (0)431 880-4334
E-mail: rschmitz@ifam.uni-kiel.de

More information:
Molecular Biology of Microorganisms (Schmitz-Streit working group),
Institute of General Microbiology, Kiel University
http://www.mikrobio.uni-kiel.de/de/ag-schmitz-streit

Kiel University
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany,
Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>