Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insights into the organization of the plasma membrane


CNMPB scientists uncover a patterned organization of proteins into long-lived multi-protein assemblies in the plasma membrane of living cells and identify responsible factors. Published in Nature Communications.

The plasma membrane forms a stable barrier separating the cell from its environment. Multiple proteins form clusters embedded into the membrane and carry out specific functions including the transport of molecules and cell-cell communication.

Scientists around Prof. Dr. Silvio Rizzoli from the Cluster of Excellence and the DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center Göttingen (UMG) now gained striking new insights into the general organization of the plasma membrane in living cells.

Membrane proteins are organized into heterogeneous long-lived clusters, termed protein assemblies. Within the assemblies, functionally related proteins show similar enrichment profiles probably forming functional subdomains. Key player for the formation and maintenance of the protein assemblies are cholesterol and the cytoskeletal element actin. Published in Nature Communications.

Original publication: Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. NAT COMMUN, 5: 4509.

Multi-protein assemblies in the plasma membrane tend to have patterned distributions rather than being randomly scattered. To investigate the mechanism behind this observation the team of Prof. Rizzoli in collaboration with scientists of the Max Planck Institute for Biophysical Chemistry in Göttingen and the LIMES Institute in Bonn performed a simultaneous investigation of all proteins in the plasma membrane of living cells. This was achieved by large-scale metabolic labeling of proteins in mammalian cells through extended incorporation of unnatural amino acid analogues, followed by fluorescent labeling.

This direct labeling approach was combined with super-resolution imaging with stimulated emission depletion (STED) microscopy. The resulting image was highly striking: a general mosaic-like pattern governs the protein organization at the plasma membrane. Multiple proteins were heterogeneously gathered into protein-rich domains, termed “protein assemblies”, surrounded by a protein-poor background.

The scientists further characterized these protein assemblies using a plethora of techniques and experimental strategies. Surprisingly, the assembly pattern was resistant to a variety of manipulations including the disruption of cytoskeletal elements, or the hydrolysis of phospholipids. However, depletion of cholesterol from the membrane caused almost complete elimination of the organization in reversible fashion, allowing the researchers to single out Cholesterol as the main molecular organizer of the protein assemblies.

The cytoskeletal element actin was identified as a secondary factor that borders the assemblies and prevents their coalescence. Many specific proteins were enriched in particular areas of the assemblies such as their edges or centers. Functionally related protein groups showed similar preferences in their enrichment profile, suggesting that functional protein-protein interactions create specialized subdomains within the assemblies.

The researchers therefore conclude that the assemblies constitute a fundamental principle of the membrane organization, which affects the nanoscale patterning of most membrane proteins, and possibly also their activity. Deciphering this fundamental membrane organization pattern and the responsible factors provides new insights for understanding the formation of specific signaling domains that are important in health and disease.

Prof. Dr. Silvio O. Rizzoli is head of the Department of Neuro- and Sensory Physiology of the University Medical Center Göttingen. He moreover is a member of the Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) in Göttingen. His research focus includes the identification of molecular signal transduction processes between nerve cells. Prof. Rizzoli applies super-resolution microscopy techniques to study the transport and function of intracellular vesicles in the synapses of nerve cells. Recently, Prof. Rizzoli was awarded for his excellent work by the European Union with an “ERC Consolidator Grant”.

Weitere Informationen: - Homepage der Arbeitsgruppe von Prof. Rizzoli - Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB)

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>