Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the organization of the plasma membrane

21.07.2015

CNMPB scientists uncover a patterned organization of proteins into long-lived multi-protein assemblies in the plasma membrane of living cells and identify responsible factors. Published in Nature Communications.

The plasma membrane forms a stable barrier separating the cell from its environment. Multiple proteins form clusters embedded into the membrane and carry out specific functions including the transport of molecules and cell-cell communication.

Scientists around Prof. Dr. Silvio Rizzoli from the Cluster of Excellence and the DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) at the University Medical Center Göttingen (UMG) now gained striking new insights into the general organization of the plasma membrane in living cells.

Membrane proteins are organized into heterogeneous long-lived clusters, termed protein assemblies. Within the assemblies, functionally related proteins show similar enrichment profiles probably forming functional subdomains. Key player for the formation and maintenance of the protein assemblies are cholesterol and the cytoskeletal element actin. Published in Nature Communications.

Original publication: Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. NAT COMMUN, 5: 4509.

Multi-protein assemblies in the plasma membrane tend to have patterned distributions rather than being randomly scattered. To investigate the mechanism behind this observation the team of Prof. Rizzoli in collaboration with scientists of the Max Planck Institute for Biophysical Chemistry in Göttingen and the LIMES Institute in Bonn performed a simultaneous investigation of all proteins in the plasma membrane of living cells. This was achieved by large-scale metabolic labeling of proteins in mammalian cells through extended incorporation of unnatural amino acid analogues, followed by fluorescent labeling.

This direct labeling approach was combined with super-resolution imaging with stimulated emission depletion (STED) microscopy. The resulting image was highly striking: a general mosaic-like pattern governs the protein organization at the plasma membrane. Multiple proteins were heterogeneously gathered into protein-rich domains, termed “protein assemblies”, surrounded by a protein-poor background.

The scientists further characterized these protein assemblies using a plethora of techniques and experimental strategies. Surprisingly, the assembly pattern was resistant to a variety of manipulations including the disruption of cytoskeletal elements, or the hydrolysis of phospholipids. However, depletion of cholesterol from the membrane caused almost complete elimination of the organization in reversible fashion, allowing the researchers to single out Cholesterol as the main molecular organizer of the protein assemblies.

The cytoskeletal element actin was identified as a secondary factor that borders the assemblies and prevents their coalescence. Many specific proteins were enriched in particular areas of the assemblies such as their edges or centers. Functionally related protein groups showed similar preferences in their enrichment profile, suggesting that functional protein-protein interactions create specialized subdomains within the assemblies.

The researchers therefore conclude that the assemblies constitute a fundamental principle of the membrane organization, which affects the nanoscale patterning of most membrane proteins, and possibly also their activity. Deciphering this fundamental membrane organization pattern and the responsible factors provides new insights for understanding the formation of specific signaling domains that are important in health and disease.

Prof. Dr. Silvio O. Rizzoli is head of the Department of Neuro- and Sensory Physiology of the University Medical Center Göttingen. He moreover is a member of the Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) in Göttingen. His research focus includes the identification of molecular signal transduction processes between nerve cells. Prof. Rizzoli applies super-resolution microscopy techniques to study the transport and function of intracellular vesicles in the synapses of nerve cells. Recently, Prof. Rizzoli was awarded for his excellent work by the European Union with an “ERC Consolidator Grant”.

Weitere Informationen:

http://www.rizzoli-lab.de - Homepage der Arbeitsgruppe von Prof. Rizzoli
http://www.cnmpb.de - Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB)

Dr. Heike Conrad | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>