Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New force sensing method reveals how cells sense tissue stiffness

04.11.2015

With the help of Talin, cells can sense mechanical attraction

Just as we can feel whether we are lying on a soft blanket or hard rocks, our cells sense whether they are in a soft or rigid mechanical environment. However, the molecular mechanisms underlying cells’ ability to detect tissue stiffness are largely unknown.


The cell adhesion protein talin (shown in red) bears mechanical forces of seven to ten piconewton und mediates the engagement of cell adhesions to the actin cytoskeleton (shown in grey). This talin linkage allows cells to sense the stiffness of their environment so that cell adhesions become reinforced on stiff substrates (left cell). Impairing the mechanical talin linkage leads to a loss of cellular rigidity sensing (right cell).

© MPI of Biochemistry/Carsten Grashoff

Mechanical forces acting across individual molecules in cells are extremely small and cannot be measured by conventional methods. Scientists of the Max Planck Institute of Biochemistry in Martinsried have now developed a new technique to quantify forces of only a few piconewton in cells.

As a result, the researchers were able to identify the central mechanism that allows cells to sense the rigidity of their environment.

To measure the exerted molecular forces, Carsten Grashoff and his team have engineered two novel fluorescent biosensors that change their color in response to piconewton forces. Genetic insertion of these biosensors into the protein of interest allows the microscopic evaluation of molecular tension in living cells.

About five years ago, Grashoff presented the first tension sensor prototype, which has been used in many laboratories worldwide, but he is confident that the new technique will be applied by many research teams as well. “The new probes enable us to resolve differences in mechanical tension with much higher precision,” said study leader Grashoff.

By applying the method to the cell adhesion protein talin, the researchers at the Max Planck Institute discovered the central mechanism that allows cells to feel their mechanical environment. “Talin carries mechanical force of about seven to ten piconewton during cell adhesion,” Grashoff explained.

“We expected that talin is involved in the force sensing process but we had no idea how important it really is. Cells in which talin is not able to form mechanical linkages can no longer distinguish whether they are on a rigid or a soft surface.”

The researchers also found that a second talin protein, called talin-2, can be used by cells to adapt to very soft environments. Since talins are present in all cells of our body, the researchers believe that they have found a general mechanism cells use to measure the extracellular rigidity.


Contact

Dr. Christiane Menzfeld
Max Planck Institute of Biochemistry, Martinsried
Phone: +49 89 8578-2824

Fax: +49 89 8578-3777

Email: menzfeld@biochem.mpg.de


Dr. Carsten Grashoff
Max Planck Institute of Biochemistry, Martinsried
Phone: +49 89 8578-2416

Email: cgrasho@biochem.mpg.de


Original publication
K. Austen, P. Ringer, A. Mehlich, A. Chrostek-Grashoff, C. Kluger, C. Klingner, B. Sabass, R. Zent, M. Rief, C. Grashoff

Extracellular rigidity sensing by talin isoform-specific mechanical linkages.

Nature Cell Biology, November 2015 DOI: 10.1038/ncb3268

Dr. Christiane Menzfeld | Max Planck Institute of Biochemistry, Martinsried
Further information:
https://www.mpg.de/9724830/talin-cell-forces

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>