Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New force sensing method reveals how cells sense tissue stiffness

04.11.2015

With the help of Talin, cells can sense mechanical attraction

Just as we can feel whether we are lying on a soft blanket or hard rocks, our cells sense whether they are in a soft or rigid mechanical environment. However, the molecular mechanisms underlying cells’ ability to detect tissue stiffness are largely unknown.


The cell adhesion protein talin (shown in red) bears mechanical forces of seven to ten piconewton und mediates the engagement of cell adhesions to the actin cytoskeleton (shown in grey). This talin linkage allows cells to sense the stiffness of their environment so that cell adhesions become reinforced on stiff substrates (left cell). Impairing the mechanical talin linkage leads to a loss of cellular rigidity sensing (right cell).

© MPI of Biochemistry/Carsten Grashoff

Mechanical forces acting across individual molecules in cells are extremely small and cannot be measured by conventional methods. Scientists of the Max Planck Institute of Biochemistry in Martinsried have now developed a new technique to quantify forces of only a few piconewton in cells.

As a result, the researchers were able to identify the central mechanism that allows cells to sense the rigidity of their environment.

To measure the exerted molecular forces, Carsten Grashoff and his team have engineered two novel fluorescent biosensors that change their color in response to piconewton forces. Genetic insertion of these biosensors into the protein of interest allows the microscopic evaluation of molecular tension in living cells.

About five years ago, Grashoff presented the first tension sensor prototype, which has been used in many laboratories worldwide, but he is confident that the new technique will be applied by many research teams as well. “The new probes enable us to resolve differences in mechanical tension with much higher precision,” said study leader Grashoff.

By applying the method to the cell adhesion protein talin, the researchers at the Max Planck Institute discovered the central mechanism that allows cells to feel their mechanical environment. “Talin carries mechanical force of about seven to ten piconewton during cell adhesion,” Grashoff explained.

“We expected that talin is involved in the force sensing process but we had no idea how important it really is. Cells in which talin is not able to form mechanical linkages can no longer distinguish whether they are on a rigid or a soft surface.”

The researchers also found that a second talin protein, called talin-2, can be used by cells to adapt to very soft environments. Since talins are present in all cells of our body, the researchers believe that they have found a general mechanism cells use to measure the extracellular rigidity.


Contact

Dr. Christiane Menzfeld
Max Planck Institute of Biochemistry, Martinsried
Phone: +49 89 8578-2824

Fax: +49 89 8578-3777

Email: menzfeld@biochem.mpg.de


Dr. Carsten Grashoff
Max Planck Institute of Biochemistry, Martinsried
Phone: +49 89 8578-2416

Email: cgrasho@biochem.mpg.de


Original publication
K. Austen, P. Ringer, A. Mehlich, A. Chrostek-Grashoff, C. Kluger, C. Klingner, B. Sabass, R. Zent, M. Rief, C. Grashoff

Extracellular rigidity sensing by talin isoform-specific mechanical linkages.

Nature Cell Biology, November 2015 DOI: 10.1038/ncb3268

Dr. Christiane Menzfeld | Max Planck Institute of Biochemistry, Martinsried
Further information:
https://www.mpg.de/9724830/talin-cell-forces

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>