Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence that diversity has a positive effect on biomass production

14.01.2016

Communities rich in species are substantially healthier and more productive than those depleted of species. An international group of scientists has solved this long-standing ecological riddle using new scientific techniques for analysing complex data of grassland ecosystems worldwide. 

The study with participation of the Helmholtz Centre for Environmental Research (UFZ), the German Centre for Integrative Biodiversity Research (iDiv) and the Martin Luther University Halle-Wittenberg is published today in the current issue of “Nature". It is the most comprehensive study up to now, which shows this effect in natural, un-manipulated ecosystems.


The Doane audubon Spring Creek Prairie site in Nebraska is a typical grassland which covered during former times great areas of the Midwest of the United States.

Photo: Ramesh Laungani, Doane College


Prof. Sally Power from the University of Western Sydney during her research at the Yarramundi site, a grassland near Sydney, Australia.

Photo: Raul Ochoa Hueso, University of Western Sydney

The biodiversity and productivity of ecosystems are important to human well-being and, at the same time, are highly impacted by human activities. The relationship between biodiversity and productivity remains a fiercely debated topic due partly to numerous, often conflicting underlying theories.

Biodiversity has been hypothesized to be of critical importance for the stability of natural ecosystems and their abilities to provide positive benefits such as oxygen production, soil genesis, and water detoxification to plant and animal communities, as well as to human society.

Many of the efforts of conservation agencies around the world are driven by the assumption that this hypothesis is true. While theoretical studies have supported this claim, scientists have struggled for the last half-century to clearly isolate such an effect in the real world.

To determine this the scientists used data collected for this research by a global consortium, the Nutrient Network, from over a thousand grassland plots spanning five continents. The network is coordinated by the University of Minnesota and examines natural meadows and pastures ecosystems at more than 70 locations worldwide research.

In Germany plots near Papenburg (Lower Saxony), Jena (Thuringia) and Bad Lauchstädt (Saxony-Anhalt) are part of the network. For the study, the team evaluated data from 1126 plots on 39 grasslands. Using recent advances in analytical methods, the group was able to isolate the biodiversity effect from the effects of other processes, including processes that can reduce diversity. “This study shows that you cannot have sustainable, productive ecosystems without maintaining biodiversity in the landscape,” says Professor James Grace of the US Geological Survey, who led the study.

A key finding of this paper is the positive effect that greater plant species diversity had on biomass production; this confirms extensive experimental results, but showing this effect in natural, un-manipulated systems has been a challenge until now.

“Impressively, the multivariate structural equation model explained more than 60% of the variation is plant species richness in these natural ecosystems. Furthermore, the underlying environmental drivers of biodiversity and richness differed, which has important implications for understanding diversity and productivity patterns at a global scale”, says Professor Stanley Harpole of UFZ/iDiv/MLU. He is one of the founders of the Nutrient Network.

The researchers found also strong and independent influences of macroclimate and soils on richness and productivity. If climate change leads to reduced species or genetic diversity, which is a real possibility, that then could lead to a reduced capacity for ecosystems to respond to additional stresses.

The new published results provide a rigorous framework towards experimentally testing the causal mechanisms that allow species to coexist and for ecosystems to provide the services that we depend on. A take-home message is that only by using theory-based multivariate causal modelling approaches, can we move towards predicting the multiple and interacting effects of human-driven global change.

Publications:
James B. Grace, T. Michael Anderson, Eric W. Seabloom, Elizabeth T. Borer, Peter B. Adler, W. Stanley Harpole, Yann Hautier, Helmut Hillebrand, Eric M. Lind, Meelis Pärtel, Jonathan D. Bakker, Yvonne M. Buckley, Michael J. Crawley, Ellen I. Damschen, Kendi F. Davies, Philip A. Fay, Jennifer Firn, Daniel S. Gruner, Andy Hector, Johannes M. H. Knops, Andrew S. MacDougall, Brett A. Melbourne, John W. Morgan, John L. Orrock, Suzanne M. Prober & Melinda D. Smith (2016): Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature (14 Jan 2016). doi:10.1038/nature16524
http://dx.doi.org/10.1038/nature16524
The study was founded by the US Geological Survey, the National Science Foundation (NSF) (Research Coordination Network (NSF-DEB-1042132) & Long Term Ecological Research (NSF-DEB-1234162 to Cedar Creek LTER) programs) as well as the UMN Institute on the Environment (DG-0001-13).

The current issue of Nature published also a comment (N&V article):
Kevin Gross (2016): Biodiversity and productivity entwined. Nature (14 Jan 2016). doi:10.1038/nature16867
http://dx.doi.org/10.1038/nature16867

Links:
Nutrient Network (NutNet)
http://www.nutnet.umn.edu/
http://environment.umn.edu/biodiversity/nutnet-new-model-for-global-research/

Further Informationen:
Prof. Stanley W. Harpole
Physiological Diversity / Department head at the Helmholtz Centre for Environmental Research (UFZ), Head of Research Group at the German Centre for Integrative Biodiversity Research (iDiv) and Professor at the Martin Luther University Halle-Wittenberg
Tel.: +49-(0)341-97-33171, -33152
https://www.idiv.de/en/the-centre/employees/details/eshow/harpole-stan-w.html
http://www.ufz.de/index.php?en=33124
and
Prof. James Grace
US Geological Survey, Lafayette, Louisiana, United States
Tel: +1 337 266 8632
https://profile.usgs.gov/gracej

or
Vic Hines, US Geological Survey, Public Affairs Contacts for Press Inquiries
Tel. +1 813-855-3125 http://www.usgs.gov/newsroom/contacts.asp
and
Tilo Arnhold/ Stefan Bernhardt, public relations at iDiv
Tel.: +49-(0)341-9733-197, -109
https://www.idiv.de/en/press/people.html
and
Susanne Hufe, public relations at UFZ
Tel.: +49-(0)341-235-1630
https://www.ufz.de/index.php?en=640
and
Manuela Bank-Zillmann, public relations at Martin Luther University Halle-Wittenberg
Tel.: +49-(0)345-55-21004, - 21438
http://www.pr.uni-halle.de/mitarbeiter/

About the German Centre for Integrative Biodiversity Research (iDiv)

iDiv is a central facility of the University of Leipzig within the meaning of Section 92 (1) of the Act on Academic Freedom in Higher Education in Saxony (Sächsisches Hochschulfreiheitsgesetz, SächsHSFG). It is run together with the Martin Luther University Halle-Wittenberg and the Friedrich Schiller University Jena, as well as in cooperation with the Helmholtz Centre for Environmental Research – UFZ.

The following non-university research institutions are involved as cooperation partners: the Helmholtz Centre for Environmental Research – UFZ, the Max Planck Institute for Biogeochemistry (MPI BGC), the Max Planck Institute for Chemical Ecology (MPI CE), the Max Planck Institute for Evolutionary Anthropology (MPI EVA), the Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, the Leibniz Institute of Plant Biochemistry (IPB), the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) and the Leibniz Institute Senckenberg Museum of Natural History Görlitz (SMNG). http://www.idiv.de

Weitere Informationen:

https://www.idiv.de/en/press/press-releases.html

Tilo Arnhold | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Research Geological Survey Helmholtz UFZ biomass diversity ecosystems

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>