Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New evidence that diversity has a positive effect on biomass production


Communities rich in species are substantially healthier and more productive than those depleted of species. An international group of scientists has solved this long-standing ecological riddle using new scientific techniques for analysing complex data of grassland ecosystems worldwide. 

The study with participation of the Helmholtz Centre for Environmental Research (UFZ), the German Centre for Integrative Biodiversity Research (iDiv) and the Martin Luther University Halle-Wittenberg is published today in the current issue of “Nature". It is the most comprehensive study up to now, which shows this effect in natural, un-manipulated ecosystems.

The Doane audubon Spring Creek Prairie site in Nebraska is a typical grassland which covered during former times great areas of the Midwest of the United States.

Photo: Ramesh Laungani, Doane College

Prof. Sally Power from the University of Western Sydney during her research at the Yarramundi site, a grassland near Sydney, Australia.

Photo: Raul Ochoa Hueso, University of Western Sydney

The biodiversity and productivity of ecosystems are important to human well-being and, at the same time, are highly impacted by human activities. The relationship between biodiversity and productivity remains a fiercely debated topic due partly to numerous, often conflicting underlying theories.

Biodiversity has been hypothesized to be of critical importance for the stability of natural ecosystems and their abilities to provide positive benefits such as oxygen production, soil genesis, and water detoxification to plant and animal communities, as well as to human society.

Many of the efforts of conservation agencies around the world are driven by the assumption that this hypothesis is true. While theoretical studies have supported this claim, scientists have struggled for the last half-century to clearly isolate such an effect in the real world.

To determine this the scientists used data collected for this research by a global consortium, the Nutrient Network, from over a thousand grassland plots spanning five continents. The network is coordinated by the University of Minnesota and examines natural meadows and pastures ecosystems at more than 70 locations worldwide research.

In Germany plots near Papenburg (Lower Saxony), Jena (Thuringia) and Bad Lauchstädt (Saxony-Anhalt) are part of the network. For the study, the team evaluated data from 1126 plots on 39 grasslands. Using recent advances in analytical methods, the group was able to isolate the biodiversity effect from the effects of other processes, including processes that can reduce diversity. “This study shows that you cannot have sustainable, productive ecosystems without maintaining biodiversity in the landscape,” says Professor James Grace of the US Geological Survey, who led the study.

A key finding of this paper is the positive effect that greater plant species diversity had on biomass production; this confirms extensive experimental results, but showing this effect in natural, un-manipulated systems has been a challenge until now.

“Impressively, the multivariate structural equation model explained more than 60% of the variation is plant species richness in these natural ecosystems. Furthermore, the underlying environmental drivers of biodiversity and richness differed, which has important implications for understanding diversity and productivity patterns at a global scale”, says Professor Stanley Harpole of UFZ/iDiv/MLU. He is one of the founders of the Nutrient Network.

The researchers found also strong and independent influences of macroclimate and soils on richness and productivity. If climate change leads to reduced species or genetic diversity, which is a real possibility, that then could lead to a reduced capacity for ecosystems to respond to additional stresses.

The new published results provide a rigorous framework towards experimentally testing the causal mechanisms that allow species to coexist and for ecosystems to provide the services that we depend on. A take-home message is that only by using theory-based multivariate causal modelling approaches, can we move towards predicting the multiple and interacting effects of human-driven global change.

James B. Grace, T. Michael Anderson, Eric W. Seabloom, Elizabeth T. Borer, Peter B. Adler, W. Stanley Harpole, Yann Hautier, Helmut Hillebrand, Eric M. Lind, Meelis Pärtel, Jonathan D. Bakker, Yvonne M. Buckley, Michael J. Crawley, Ellen I. Damschen, Kendi F. Davies, Philip A. Fay, Jennifer Firn, Daniel S. Gruner, Andy Hector, Johannes M. H. Knops, Andrew S. MacDougall, Brett A. Melbourne, John W. Morgan, John L. Orrock, Suzanne M. Prober & Melinda D. Smith (2016): Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature (14 Jan 2016). doi:10.1038/nature16524
The study was founded by the US Geological Survey, the National Science Foundation (NSF) (Research Coordination Network (NSF-DEB-1042132) & Long Term Ecological Research (NSF-DEB-1234162 to Cedar Creek LTER) programs) as well as the UMN Institute on the Environment (DG-0001-13).

The current issue of Nature published also a comment (N&V article):
Kevin Gross (2016): Biodiversity and productivity entwined. Nature (14 Jan 2016). doi:10.1038/nature16867

Nutrient Network (NutNet)

Further Informationen:
Prof. Stanley W. Harpole
Physiological Diversity / Department head at the Helmholtz Centre for Environmental Research (UFZ), Head of Research Group at the German Centre for Integrative Biodiversity Research (iDiv) and Professor at the Martin Luther University Halle-Wittenberg
Tel.: +49-(0)341-97-33171, -33152
Prof. James Grace
US Geological Survey, Lafayette, Louisiana, United States
Tel: +1 337 266 8632

Vic Hines, US Geological Survey, Public Affairs Contacts for Press Inquiries
Tel. +1 813-855-3125
Tilo Arnhold/ Stefan Bernhardt, public relations at iDiv
Tel.: +49-(0)341-9733-197, -109
Susanne Hufe, public relations at UFZ
Tel.: +49-(0)341-235-1630
Manuela Bank-Zillmann, public relations at Martin Luther University Halle-Wittenberg
Tel.: +49-(0)345-55-21004, - 21438

About the German Centre for Integrative Biodiversity Research (iDiv)

iDiv is a central facility of the University of Leipzig within the meaning of Section 92 (1) of the Act on Academic Freedom in Higher Education in Saxony (Sächsisches Hochschulfreiheitsgesetz, SächsHSFG). It is run together with the Martin Luther University Halle-Wittenberg and the Friedrich Schiller University Jena, as well as in cooperation with the Helmholtz Centre for Environmental Research – UFZ.

The following non-university research institutions are involved as cooperation partners: the Helmholtz Centre for Environmental Research – UFZ, the Max Planck Institute for Biogeochemistry (MPI BGC), the Max Planck Institute for Chemical Ecology (MPI CE), the Max Planck Institute for Evolutionary Anthropology (MPI EVA), the Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, the Leibniz Institute of Plant Biochemistry (IPB), the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) and the Leibniz Institute Senckenberg Museum of Natural History Görlitz (SMNG).

Weitere Informationen:

Tilo Arnhold | idw - Informationsdienst Wissenschaft

Further reports about: Environmental Research Geological Survey Helmholtz UFZ biomass diversity ecosystems

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>