Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery increases understanding of how plants and bacteria see light

16.08.2016

Plants, bacteria and fungi react to light with light-sensitive proteins. Scientists from the University of Gothenburg and their Finnish colleagues from University of Jyväskylä have now determined the inner workings of one of these proteins. The results have been published in the most recent issue of Science Advances.

The investigated proteins are called “phytochromes”. They consist of thousands of atoms and can be thought of as tiny, microscopic machines. These proteins are found in all plant leaves, many bacteria and fungi. The proteins inform the cell whether it is day or night or whether it is cloudy or sunny.

“Phytochrome proteins are the eyes of plants and in many bacteria. We have now discovered how bacterial phytochromes work at the molecular level,” explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Phytochromes change in the light
Efficient photosynthesis requires that leaves are exposed to the sun. For this, the plants have to grow towards sunlight and phytochrome proteins control this process. Similarly, bacteria use phytochromes to move to spots where they can survive better. The proteins detect the light and signal to the plant cell how much light is available.

“Each time a phytochrome protein absorbs light, it deforms in a well-orchestrated series of structural changes. We already discovered an early structural change two years ago. Back then we used a shortened phytochrome. In the meantime we have advanced our experimental methods and could now study a full-length protein with a biological activator unit, called histidine kinase. This revealed the change in the final stage of the process.” says Sebastian Westenhoff.

New ways of controlling cells
The discovery increases our understanding of how phytochromes work. This enables modification of the proteins, for example to increase crop yield. However, the new knowledge is also crucial for another technology, where scientists engineer light sensitive proteins to control organism by light. Potentially such artificial proteins can be used to release drugs at specific spots in out body, for example in cancer cells.

“Proteins are molecular nanomachines, which control most of what we see in Nature. Deciphering the structure of proteins is key to understanding how the machines work. This knowledge can also be used to modify or construct new proteins, with custom-built functions,” says Sebastian Westenhoff.

Collaborative effort
The project was carried out as a collaboration between two groups at the University of Gothenburg and the University of Jyväskylä in Finland. However, more collaboration was needed and the data for the study was recorded at experimental facilities in France, Switzerland, Finland, and the US.

“Numerous data sets had to be recoded and evaluated until a reliable and complete result was obtained.” says Sebastian Westenhoff, “but I think that all the hard work was worth it, because we now understand better how plants and bacteria see light.”

Link to the article in Science Advances: http://advances.sciencemag.org/content/2/8/e1600920

Contact:
Sebastian Westenhoff, Department for Chemistry and Molecular Biology
Tel.: +46 766 18 39 36, E-mail: sebastian.westenhoff@chem.gu.se

Weitere Informationen:

http://science.gu.se/english/News/News_detail/new-discovery-increases-understand...

Ulrika Lundin | idw - Informationsdienst Wissenschaft
Further information:
http://www.gu.se/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>