Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New discovery increases understanding of how plants and bacteria see light


Plants, bacteria and fungi react to light with light-sensitive proteins. Scientists from the University of Gothenburg and their Finnish colleagues from University of Jyväskylä have now determined the inner workings of one of these proteins. The results have been published in the most recent issue of Science Advances.

The investigated proteins are called “phytochromes”. They consist of thousands of atoms and can be thought of as tiny, microscopic machines. These proteins are found in all plant leaves, many bacteria and fungi. The proteins inform the cell whether it is day or night or whether it is cloudy or sunny.

“Phytochrome proteins are the eyes of plants and in many bacteria. We have now discovered how bacterial phytochromes work at the molecular level,” explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Phytochromes change in the light
Efficient photosynthesis requires that leaves are exposed to the sun. For this, the plants have to grow towards sunlight and phytochrome proteins control this process. Similarly, bacteria use phytochromes to move to spots where they can survive better. The proteins detect the light and signal to the plant cell how much light is available.

“Each time a phytochrome protein absorbs light, it deforms in a well-orchestrated series of structural changes. We already discovered an early structural change two years ago. Back then we used a shortened phytochrome. In the meantime we have advanced our experimental methods and could now study a full-length protein with a biological activator unit, called histidine kinase. This revealed the change in the final stage of the process.” says Sebastian Westenhoff.

New ways of controlling cells
The discovery increases our understanding of how phytochromes work. This enables modification of the proteins, for example to increase crop yield. However, the new knowledge is also crucial for another technology, where scientists engineer light sensitive proteins to control organism by light. Potentially such artificial proteins can be used to release drugs at specific spots in out body, for example in cancer cells.

“Proteins are molecular nanomachines, which control most of what we see in Nature. Deciphering the structure of proteins is key to understanding how the machines work. This knowledge can also be used to modify or construct new proteins, with custom-built functions,” says Sebastian Westenhoff.

Collaborative effort
The project was carried out as a collaboration between two groups at the University of Gothenburg and the University of Jyväskylä in Finland. However, more collaboration was needed and the data for the study was recorded at experimental facilities in France, Switzerland, Finland, and the US.

“Numerous data sets had to be recoded and evaluated until a reliable and complete result was obtained.” says Sebastian Westenhoff, “but I think that all the hard work was worth it, because we now understand better how plants and bacteria see light.”

Link to the article in Science Advances:

Sebastian Westenhoff, Department for Chemistry and Molecular Biology
Tel.: +46 766 18 39 36, E-mail:

Weitere Informationen:

Ulrika Lundin | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>