Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery increases understanding of how plants and bacteria see light

16.08.2016

Plants, bacteria and fungi react to light with light-sensitive proteins. Scientists from the University of Gothenburg and their Finnish colleagues from University of Jyväskylä have now determined the inner workings of one of these proteins. The results have been published in the most recent issue of Science Advances.

The investigated proteins are called “phytochromes”. They consist of thousands of atoms and can be thought of as tiny, microscopic machines. These proteins are found in all plant leaves, many bacteria and fungi. The proteins inform the cell whether it is day or night or whether it is cloudy or sunny.

“Phytochrome proteins are the eyes of plants and in many bacteria. We have now discovered how bacterial phytochromes work at the molecular level,” explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Phytochromes change in the light
Efficient photosynthesis requires that leaves are exposed to the sun. For this, the plants have to grow towards sunlight and phytochrome proteins control this process. Similarly, bacteria use phytochromes to move to spots where they can survive better. The proteins detect the light and signal to the plant cell how much light is available.

“Each time a phytochrome protein absorbs light, it deforms in a well-orchestrated series of structural changes. We already discovered an early structural change two years ago. Back then we used a shortened phytochrome. In the meantime we have advanced our experimental methods and could now study a full-length protein with a biological activator unit, called histidine kinase. This revealed the change in the final stage of the process.” says Sebastian Westenhoff.

New ways of controlling cells
The discovery increases our understanding of how phytochromes work. This enables modification of the proteins, for example to increase crop yield. However, the new knowledge is also crucial for another technology, where scientists engineer light sensitive proteins to control organism by light. Potentially such artificial proteins can be used to release drugs at specific spots in out body, for example in cancer cells.

“Proteins are molecular nanomachines, which control most of what we see in Nature. Deciphering the structure of proteins is key to understanding how the machines work. This knowledge can also be used to modify or construct new proteins, with custom-built functions,” says Sebastian Westenhoff.

Collaborative effort
The project was carried out as a collaboration between two groups at the University of Gothenburg and the University of Jyväskylä in Finland. However, more collaboration was needed and the data for the study was recorded at experimental facilities in France, Switzerland, Finland, and the US.

“Numerous data sets had to be recoded and evaluated until a reliable and complete result was obtained.” says Sebastian Westenhoff, “but I think that all the hard work was worth it, because we now understand better how plants and bacteria see light.”

Link to the article in Science Advances: http://advances.sciencemag.org/content/2/8/e1600920

Contact:
Sebastian Westenhoff, Department for Chemistry and Molecular Biology
Tel.: +46 766 18 39 36, E-mail: sebastian.westenhoff@chem.gu.se

Weitere Informationen:

http://science.gu.se/english/News/News_detail/new-discovery-increases-understand...

Ulrika Lundin | idw - Informationsdienst Wissenschaft
Further information:
http://www.gu.se/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>