Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Detection Method for Goby Invasion

28.01.2016

Conventional methods of stock monitoring are unsuitable for certain fish species. For example, the infestation of an area with invasive Ponto-Caspian gobies cannot be identified in time by standard methods. Researchers at the University of Basel have developed a simple, effective and cost-efficient test for these introduced non-native fish, they report in the magazine PLOS ONE.

Gobies from the Black and Caspian Sea are spreading along the shipping routes in Central Europe and North America. They have been present in the Swiss part of the Rhine for about four years and already dominate the bottom of the stream in the region of Basel. So far, they have not advanced further than the water power plant in Rheinfelden, but a continuing expansion seems inevitable.


Ponto-Caspian goby (Neogobius melanostomus)

University of Basel, Department of Environmental Sciences

Current methods of fish monitoring are not suited to adequately measure the spreading of Ponto-Caspian gobies as they are labor-intensive and not sufficiently sensitive. Accordingly, infestations of an area with gobies are often only discovered when they have reached high densities and efforts of containment remain futile. Researchers of the Department of Environmental Sciences of the University of Basel have now developed a test that allows for the detection of Ponto-Caspian gobies in streaming and stagnant water.

Measuring the environmental DNA

With a commercially available, though slightly modified, water column sampler, water samples are taken from the bottom of the water body, where invasive gobies live. Via feces or scales, the fish release so-called environmental DNA into the stream. The water samples are then analyzed for traces of this so-called eDNA in the lab. The test developed at the University of Basel reacts exclusively to the genetic material of Ponto-Caspian gobies, but not to domestic fish species.

The procedure is less time and cost-intensive than angling, and the samples can even be drawn by untrained individuals. Unlike electrofishing, the method does not impact the fish fauna and can consequently be used in protected zones and breeding grounds.

First test for lotic water

Five species of invasive gobies populate wide areas of freshwater and brackish waters in Central Europe – the species that is most common to the region around Basel, Neogobius melanostomus, even figures among the 100 worst invaders in Europe.

“Our test is one of the first approaches that targets a specific fish species and detects it successfully in flowing freshwater” says the study’s lead author, Dr. Irene Adrian-Kalchhauser. “We hope that our work contributes to establishing eDNA as a standard method in European water resource management. Similar tests have been used for a few years to track the expansion of the Asian carp in the United States.”

Original article
Irene Adrian-Kalchhauser, Patricia Burkhardt-Holm
An eDNA assay to monitor a globally invasive fish species from flowing freshwater
PLOS ONE 11 (1) | doi: 10.1371/journal.pone.0147558

Further Information
Dr. Irene Adrian-Kalchhauser, University of Basel, Department of Environmental Sciences, Tel. +41 61 26704 10, email: irene.adrian-kalchhauser@unibas.ch.

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/New-Detection-Method-for-...

Reto Caluori | Universität Basel

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>