Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Detection Method for Goby Invasion

28.01.2016

Conventional methods of stock monitoring are unsuitable for certain fish species. For example, the infestation of an area with invasive Ponto-Caspian gobies cannot be identified in time by standard methods. Researchers at the University of Basel have developed a simple, effective and cost-efficient test for these introduced non-native fish, they report in the magazine PLOS ONE.

Gobies from the Black and Caspian Sea are spreading along the shipping routes in Central Europe and North America. They have been present in the Swiss part of the Rhine for about four years and already dominate the bottom of the stream in the region of Basel. So far, they have not advanced further than the water power plant in Rheinfelden, but a continuing expansion seems inevitable.


Ponto-Caspian goby (Neogobius melanostomus)

University of Basel, Department of Environmental Sciences

Current methods of fish monitoring are not suited to adequately measure the spreading of Ponto-Caspian gobies as they are labor-intensive and not sufficiently sensitive. Accordingly, infestations of an area with gobies are often only discovered when they have reached high densities and efforts of containment remain futile. Researchers of the Department of Environmental Sciences of the University of Basel have now developed a test that allows for the detection of Ponto-Caspian gobies in streaming and stagnant water.

Measuring the environmental DNA

With a commercially available, though slightly modified, water column sampler, water samples are taken from the bottom of the water body, where invasive gobies live. Via feces or scales, the fish release so-called environmental DNA into the stream. The water samples are then analyzed for traces of this so-called eDNA in the lab. The test developed at the University of Basel reacts exclusively to the genetic material of Ponto-Caspian gobies, but not to domestic fish species.

The procedure is less time and cost-intensive than angling, and the samples can even be drawn by untrained individuals. Unlike electrofishing, the method does not impact the fish fauna and can consequently be used in protected zones and breeding grounds.

First test for lotic water

Five species of invasive gobies populate wide areas of freshwater and brackish waters in Central Europe – the species that is most common to the region around Basel, Neogobius melanostomus, even figures among the 100 worst invaders in Europe.

“Our test is one of the first approaches that targets a specific fish species and detects it successfully in flowing freshwater” says the study’s lead author, Dr. Irene Adrian-Kalchhauser. “We hope that our work contributes to establishing eDNA as a standard method in European water resource management. Similar tests have been used for a few years to track the expansion of the Asian carp in the United States.”

Original article
Irene Adrian-Kalchhauser, Patricia Burkhardt-Holm
An eDNA assay to monitor a globally invasive fish species from flowing freshwater
PLOS ONE 11 (1) | doi: 10.1371/journal.pone.0147558

Further Information
Dr. Irene Adrian-Kalchhauser, University of Basel, Department of Environmental Sciences, Tel. +41 61 26704 10, email: irene.adrian-kalchhauser@unibas.ch.

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/New-Detection-Method-for-...

Reto Caluori | Universität Basel

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>