Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Computer Model Could Explain how Simple Molecules Took First Step Toward Life


Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules

Nearly four billion years ago, the earliest precursors of life on Earth emerged. First small, simple molecules, or monomers, banded together to form larger, more complex molecules, or polymers. Then those polymers developed a mechanism that allowed them to self-replicate and pass their structure on to future generations.

Brookhaven National Laboratory

A schematic drawing of template-assisted ligation, shown in this model to give rise to autocatalytic systems.

We wouldn't be here today if molecules had not made that fateful transition to self-replication. Yet despite the fact that biochemists have spent decades searching for the specific chemical process that can explain how simple molecules could make this leap, we still don't really understand how it happened.

Now Sergei Maslov, a computational biologist at the U.S. Department of Energy's Brookhaven National Laboratory and adjunct professor at Stony Brook University, and Alexei Tkachenko, a scientist at Brookhaven's Center for Functional Nanomaterials (CFN), have taken a different, more conceptual approach.

They've developed a model that explains how monomers could very rapidly make the jump to more complex polymers. And what their model points to could have intriguing implications for CFN's work in engineering artificial self-assembly at the nanoscale. Their work is published in the July 28, 2015 issue of The Journal of Chemical Physics.

To understand their work, let's consider the most famous organic polymer, and the carrier of life's genetic code: DNA. This polymer is composed of long chains of specific monomers called nucleotides, of which the four kinds are adenine, thymine, guanine, and cytosine (A, T, G, C). In a DNA double helix, each specific nucleotide pairs with another: A with T, and G with C. Because of this complementary pairing, it would be possible to put a complete piece of DNA back together even if just one of the two strands was intact.

While DNA has become the molecule of choice for encoding biological information, its close cousin RNA likely played this role at the dawn of life. This is known as the RNA world hypothesis, and it's the scenario that Maslov and Tkachenko considered in their work.

The single complete RNA strand is called a template strand, and the use of a template to piece together monomer fragments is what is known as template-assisted ligation. This concept is at the crux of their work. They asked whether that piecing together of complementary monomer chains into more complex polymers could occur not as the healing of a broken polymer, but rather as the formation of something new.

"Suppose we don't have any polymers at all, and we start with just monomers in a test tube," explained Tkachenko. "Will that mixture ever find its way to make those polymers? The answer is rather remarkable: Yes, it will! You would think there is some chicken-and-egg problem—that, in order to make polymers, you already need polymers there to provide the template for their formation. Turns out that you don't really."

Instilling memory

Maslov and Tkachenko's model imagines some kind of regular cycle in which conditions change in a predictable fashion—say, the transition between night and day. Imagine a world in which complex polymers break apart during the day, then repair themselves at night. The presence of a template strand means that the polymer reassembles itself precisely as it was the night before. That self-replication process means the polymer can transmit information about itself from one generation to the next. That ability to pass information along is a fundamental property of life.

"The way our system replicates from one day cycle to the next is that it preserves a memory of what was there," said Maslov. "It's relatively easy to make lots of long polymers, but they will have no memory. The template provides the memory. Right now, we are solving the problem of how to get long polymer chains capable of memory transmission from one unit to another to select a small subset of polymers out of an astronomically large number of solutions."

According to Maslov and Tkachenko's model, a molecular system only needs a very tiny percentage of more complex molecules—even just dimers, or pairs of identical molecules joined together—to start merging into the longer chains that will eventually become self-replicating polymers. This neatly sidesteps one of the most vexing puzzles of the origins of life: Self-replicating chains likely need to be very specific sequences of at least 100 paired monomers, yet the odds of 100 such pairs randomly assembling themselves in just the right order is practically zero.

"If conditions are right, there is what we call a first-order transition, where you go from this soup of completely dispersed monomers to this new solution where you have these long chains appearing," said Tkachenko. "And we now have this mechanism for the emergence of these polymers that can potentially carry information and transmit it downstream. Once this threshold is passed, we expect monomers to be able to form polymers, taking us from the primordial soup to a primordial soufflé."

While the model's concept of template-assisted ligation does describe how DNA—as well as RNA—repairs itself, Maslov and Tkachenko's work doesn't require that either of those was the specific polymer for the origin of life.

"Our model could also describe a proto-RNA molecule. It could be something completely different," Maslov said.

Order from disorder

The fact that Maslov and Tkachenko's model doesn't require the presence of a specific molecule speaks to their more theoretical approach.

"It's a different mentality from what a biochemist would do," said Tkachenko. "A biochemist would be fixated on specific molecules. We, being ignorant physicists, tried to work our way from a general conceptual point of view, as there's a fundamental problem."

That fundamental problem is the second law of thermodynamics, which states that systems tend toward increasing disorder and lack of organization. The formation of long polymer chains from monomers is the precise opposite of that.

"How do you start with the regular laws of physics and get to these laws of biology which makes things run backward, which make things more complex, rather than less complex?" Tkachenko queried. "That's exactly the jump that we want to understand."

Applications in nanoscience

The work is an outgrowth of efforts at the Center for Functional Nanomaterials, a DOE Office of Science User Facility, to use DNA and other biomolecules to direct the self-assembly of nanoparticles into large, ordered arrays. While CFN doesn't typically focus on these kinds of primordial biological questions, Maslov and Tkachenko's modeling work could help CFN scientists engaged in cutting-edge nanoscience research to engineer even larger and more complex assemblies using nanostructured building blocks.

"There is a huge interest in making engineered self-assembled structures, so we were essentially thinking about two problems at once," said Tkachenko. "One is relevant to biologists, and second asks whether we can engineer a nanosystem that will do what our model does."

The next step will be to determine whether template-aided ligation can allow polymers to begin undergoing the evolutionary changes that characterize life as we know it. While this first round of research involved relatively modest computational resources, that next phase will require far more involved models and simulations.

Maslov and Tkachenko's work has solved the problem of how long polymer chains capable of information transmission from one generation to the next could emerge from the world of simple monomers. Now they are turning their attention to how such a system could naturally narrow itself down from exponentially many polymers to only a select few with desirable sequences.

"What we needed to show here was that this template-based ligation does result in a set of polymer chains, starting just from monomers," said Tkachenko. "So the next question we will be asking is whether, because of this template-based merger, we will be able to see specific sequences that will be more 'fit' than others. So this work sets the stage for the shift to the Darwinian phase."

This work was supported by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific Paper: "Spontaneous emergence of autocatalytic information-coding polymers"

Media contact: Peter Genzer, 631-344-3174,

Peter Genzer | newswise
Further information:

Further reports about: Laboratory Molecules RNA chains night polymer chains sequences

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

More VideoLinks >>>