Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New climate stress index model challenges doomsday forecasts for world's coral reefs


Complex model performs better than common temperature threshold predictions

Recent forecasts on the impacts of climate change on the world's coral reefs--especially ones generated from oceanic surface temperature data gathered by satellites--paint a grim picture for the future of the "rainforests of the sea."

A WCS scientist recording data on coral cover in coastal Kenya. A new climate stress model using both environmental data and field observations provides scientists with a more accurate predictive tool than more widely used models based on solely temperature and coral survival thresholds, according to a new study by WCS and other groups.

Credit: Emily Darling/WCS

A newer and more complex model incorporating data from both environmental factors and field observations of coral responses to stress provides a better forecasting tool than the more widely used models and a more positive future for coral reefs, according to a new study by the Wildlife Conservation Society and other groups.

The study authors point out that, according to the climate stress index model first developed in 2008, coral reefs are responding to more factors than temperature and therefore more resilient to rising temperatures. They conclude that global climate change is the greatest global threat to coral reefs but the future of these ecosystems is more varied than predictions from the more widely used "temperature threshold" models.

The paper titled "Regional coral responses to climate disturbances and warming is predicted by multivariate stress model and not temperature threshold metrics" appears in the online edition of Climatic Change. The authors are: Timothy R. McClanahan of the Wildlife Conservation Society; Joseph Maina of the Wildlife Conservation Society and the Australia Research Council Centre of Excellence for Environmental Decisions; and Mebrahtu Ateweberhan of the Wildlife Conservation Society and the University of Warwick.

"Our new multivariate stress model suggests that the future of coral reefs is considerably more nuanced and spatially complex than predictions arising from the threshold models," said Dr. Tim McClanahan, WCS's Senior Conservation scientist and a co-author on the study.

"According to our findings in the Western Indian Ocean, some places will do well and others will not. The key to accurate predictions is using all available environmental data and complementing it with on-the-ground observations on reef cover, coral communities, and other environmental variables that are key to understanding how corals respond to the interaction between all these variables."

In the study, the authors compared the abilities of three common thermal threshold indices against a stress model that includes temperature but also light and water quality and movement variables and used the models to predict coral cover and susceptibility to bleaching during a past large stress event: specifically the 1997-98 coral bleaching event in the Western Indian Ocean.

The field information used in the test included a compilation of 10 years of coral community data before the bleaching event, two years after the bleaching event, and data during the period of coral recovery between 2001-2005.

While the three temperature threshold models (sea surface temperature, cumulative thermal stress, and annual thermal stress) were highly variable with little agreement to field data after the 1998 rise in temperature and coral mortality, the multivariate model based on 11environmental variables combined using a fuzzy logic systems revealed a more accurate fit with the recorded coral cover and susceptibility in the recovery period that followed.

"This latest research suggests a more optimistic future for the world's coral reefs," said Dr. Caleb McClennen, Executive Director of WCS's Marine Program. "The ability of certain coral communities to resist and recover from climatic factors provides hope for the future of the oceans. Our imperative is now to seek out and protect those locations that are refuges from climate change, and reduce other human stresses such as fisheries to ensure the long term survival of coral reefs."


This research was supported by the John D. and Catherine T. MacArthur Foundation, the Western Indian Ocean Marine Science Association, and the World Bank Targeted Research Group on Coral Bleaching.

To access the article, go to:

Media Contact

John Delaney


John Delaney | EurekAlert!

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>