Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New class of synthetic molecules mimics antibodies

17.12.2014

A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.

The new molecules -- synthetic antibody mimics (SyAMs) -- attach themselves simultaneously to disease cells and disease-fighting cells. The result is a highly targeted immune response, similar to the action of natural human antibodies.


SyAMs recognize disease cells and bind with a specific protein on their surface. They also bind with a receptor on an immune cell.

Credit: Yale University

"Unlike antibodies, however, our molecules are synthetic organic compounds that are approximately one-twentieth the size of antibodies," said David A. Spiegel, a professor of chemistry at Yale whose lab developed the molecules. "They are unlikely to cause unwanted immune reactions due to their structure, are thermally stable, and have the potential to be administered orally, just like traditional, small-molecule drugs."

Spiegel and his team describe the research in a paper published online Dec. 16 by the Journal of the American Chemical Society.

The paper looks specifically at SyAM molecules used to attack prostate cancer. Called SyAM-Ps, they work first by recognizing cancer cells and binding with a specific protein on their surface. Next, they also bind with a receptor on an immune cell. This induces a targeted response that leads to the destruction of the cancer cell.

Spiegel said the process of synthesizing and optimizing the structure of the molecules required considerable time and effort. "We now know that synthetic molecules of intermediate size possess perhaps the most important functional properties of antibodies -- targeting and stimulation of immune cells," he said.

"It's also noteworthy that molecules of such a small size can bring together two objects as enormous as cells, and trigger a specific functional response, entirely as a result of specific receptor interactions," Spiegel added.

Beyond their potential for treating prostate cancer, SyAMs may have applications for treating other forms of cancer, HIV and various bacterial diseases.

Spiegel also is a member of Yale Cancer Center.

Jim Shelton | EurekAlert!
Further information:
http://www.yale.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>