Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New boron compounds for organic light-emitting diodes (OLEDs)

10.06.2015

Luminescent blue boron-containing nanographenes are highly promising materials for portable electronic devices.

Major advances in the field of organic electronics are currently revolutionising previously silicon-dominated semiconductor technology. Customised organic molecules enable the production of lightweight, mechanically flexible electronic components that are perfectly adapted to individual applications.


Chemists at the Goethe University have now developed a new class of organic luminescent materials through the targeted introduction of boron atoms into the molecular structures.

GU

Chemists at the Goethe University have now developed a new class of organic luminescent materials through the targeted introduction of boron atoms into the molecular structures. The compounds described in the professional journal "Angewandte Chemie" (Applied Chemistry) feature an intensive blue fluorescence and are therefore of interest for use in organic light-emitting diodes (LED's).

Carbon in the form of graphite conducts the electrical current in a similar way to a metal. In addition, its two-dimensional shape, the graphene layer, has extremely attractive optical and electronic properties. In graphene, the discoverers of which were awarded the Nobel Prize for Physics in 2010, countless benzene rings are fused to form a honeycomb structure. Sections of this structure, so-called nanographenes or Polycyclic Aromatic Hydrocarbons (PAHs), constitute an important basis of organic electronics.

"For a long time, efforts were largely focused on affecting the properties of nanographenes by chemically manipulating their edges", according to Prof. Matthias Wagner of the Institute for Inorganic and Analytical Chemistry at the Goethe University. "However, in recent years, researchers have been increasingly capable of also modifying the inner structure by embedding foreign atoms in the carbon network. This is where boron assumes crucial significance."

A comparison of the new boron-containing nanographenes with the analogous boron-free hydrocarbons verifies the fact that the boron atoms have a decisive impact on two key properties of an OLED luminophore: the fluorescence colour shifts into the highly desirable blue spectral range and the capacity to transport electrons is substantially improved.

To date, only limited use could be made of the full potential of boron-containing PAHs, since most of the exponents are sensitive to air and moisture. "This problem does not occur with our materials, which is important with regard to practical applications" explains Valentin Hertz, who synthesised the compounds within the scope of his doctoral dissertation.

Hertz and Wagner anticipate that materials such as the graphene flakes they have developed will be particularly suitable for use in portable electronic devices. As film displays for future generations of smartphones and tablets, even large-scale screens could be rolled up or folded to save space when the devices are not in use.

Publication
V. Hertz et al: Boron-Containing PAHs: Facile Synthesis of Stable, Redox-Active Luminophores, in: Angew. Chem. Int. Ed. 2015, DOI: 10.1002/anie.201502977;
http://onlinelibrary.wiley.com/doi/10.1002/anie.201502977/abstract

Information: Prof. Dr. Matthias Wagner, Institute for Anorganic and Analytic Chemistry, Riedberg Campus, Tel.: +49 (0) 69 798-29156, Matthias.Wagner@chemie.uni-frankfurt.de

Goethe University has a strong background in research and is based in the European financial center of Frankfurt. Founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens, it is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University Frankfurt, Editor: Dr. Anne Hardy, Advisor for Science Communication, Marketing and Communications Department, Theodor-W.-Adorno-Platz 1, 60629 Frankfurt/ Main, Tel: +49 (0)69 798-12498, hardy@pvw.uni-frankfurt.
Internet: www.uni-frankfurt.de

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>