Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New AUV plankton sampling system deployed

18.08.2015

A group of Woods Hole Oceanographic Institution (WHOI) researchers and engineers have developed and tested an innovative new system for sampling small planktonic larvae in coastal ocean waters and understanding their distribution.

Results were published online July 30, 2015 in the Journal of Experimental Marine Biology and Ecology.


The researchers targeted barnacles because their reproductive biology is well known, and the scientists knew when and where larvae would be abundant. Adult barnacles are sessile (shown), but the planktonic larvae travel and disperse with water movements. Several barnacle species co-occur in coastal Massachuetts waters, but little is known of how their larvae behave and distribute differently in the water column.

Photo by Julie van der Hoop

Traditionally, pumps and nets are used for sampling plankton, which require sampling at predetermined stations or towing nets behind a ship, followed by visually sorting collected organisms into taxonomic groups. Samples generally combine organisms collected throughout horizontal or vertical tracks, making it impossible to detect small gradations or species-specific patterns in larval distribution.

The sampling system combines three cutting edge technologies--an adapted Suspended Particulate Rosette (SUPR) multi-sampler, a REMUS autonomous underwater vehicle equipped with sensors, and identification of organisms by DNA barcode analysis. They've dubbed the new system "SUPR-REMUS."

"SUPR-REMUS lets us take discrete samples in the water, in a way that nets can't do in shallow water," said Annette Govindarajan, lead author on the paper. The new system is already yielding insight into spatial distribution of invertebrate larvae.

The group deployed the vehicle, which they named "SUPR-REMUS," in Buzzards Bay, Mass., twice during March 2014, when barnacle larvae were abundant. The REMUS 600 carried a CTD sensor to measure and record conductivity, temperature, and depth. The researchers performed genetic barcode analysis of the collected larvae and deduced species distributions.

"Plankton nets that take discrete samples, such as multiple opening-closing systems, are meant for use in open water," said Govindarajan. "Our goal was to sample in shallow water, and close to the bottom for larvae of coastal benthic invertebrates."

The researchers targeted barnacles because their reproductive biology is well known, and the scientists knew when and where larvae would be abundant. Adult barnacles are sessile, but the planktonic larvae travel and disperse with water movements. Several barnacle species co-occur in coastal Massachuetts waters, but little is known of how their larvae behave and distribute differently in the water column.

"Traditional sampling doesn't give us fine-scale information," said biologist and co-author Jesús Pineda. "Larvae often accumulate in small-scale features such as ocean fronts, where temperature and salinity vary at small distances. We need a sampling device that can resolve these spatial scales and take multiple samples. With this sampler we can initiate autonomous sampling remotely, in response to a change in the environment--such as a change in water temperature--that we suspect initiates larval transport."

Team members also included WHOI Adjunct Scientist Chip Breier and WHOI Principal Engineer Mike Purcell.

The team modified the SUPR sampler to fit in the front section of a REMUS 600, with additional foam and weights for buoyancy and trim. A flow meter measured seawater volume, which was pumped through external ports at predetermined times, and multiple 200um-mesh filters retained the plankton from separate samples.

On two days in March the team launched the SUPR-REMUS to conduct transects perpendicular to the coastline. On the first mission it traveled from the surface to about 15m. deep in a sawtooth ("yo-yo") vertical pattern over a 9.9 km distance. The second deployment was more complex: The AUV's upper and lower track boundaries were programmed relative to the surface and to the sea floor, over a 11.2 km distance.

"The deployments were challenging as the weather at the time was frigid, but we were very pleased with how SUPR-REMUS performed," said Annette Govindarajan.

Barnacle larvae progress through multiple planktonic stages , termed "nauplii" and "cyprids", before settling to the bottom. Larvae of different species can appear nearly identical, and traditional identification methods are based on detailed microscopic examination, a process that can take a long time.

Instead, the researchers used genetic barcode analysis, short gene sequences that are diagnostic for numerous invertebrate species. They identified a total of 164 barnacle larvae under a dissection microscope, extracted DNA from the larvae, and used standard techniques to sequence mitochondrial COI genes, often called a barcode sequence. The researchers compared the larval sequences to known sequences published in GenBank and to sequences from local adult barnacles.

They found the barnacle larvae were abundant, up to 950 larvae per cubic meter of water. Larvae were of three species--Amphibalanus sp., Semibalanus balanoides, and Chthamalus fragilis--with Amphibalanus sp. by far the most abundant. The researchers saw some patterns in distribution, but need to conduct a larger survey before drawing conclusions.

Overall, Govindarajan said the project met the primary objective, testing the feasibility of SUPR-REMUS for sampling in coastal waters: "We were thrilled with the first results for robotic sampling coupled with genetic analysis. We got interesting results, learned from it, and plan to deploy again this fall."

###

The work was funded internally through the Cecil H. and Ida M. Green Technology Innovation Award and the Alfred M. Zeien Endowed Fund for Innovative Ocean Research. The team has funding from the Massachusetts Institute of Technology Sea Grant Program to use SUPR-REMUS in fall 2015.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the ocean and its interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment. For more information, please visit http://www.whoi.edu.

Media Contact

WHOI Media Office
media@whoi.edu
508-289-3340

 @WHOImedia

http://www.whoi.edu 

WHOI Media Office | EurekAlert!

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>