Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neils help removing epigenetic marks

12.01.2016

Researchers at the Institute of Molecular Biology have identified two proteins important for the demethylation of DNA

Scientists at the Institute of Molecular Biology (IMB) in Mainz have identified a missing piece of the puzzle in understanding how epigenetic marks are removed from DNA.

The research on DNA demethylation sheds new light on a fundamental process that is important in development and diseases such as cancer.

Epigenetics is defined by heritable changes in gene expression that do not derive from changes in the DNA sequence itself. Epigenetic processes play a central role in a broad spectrum of diseases, such as cardiovascular disease, neurodegenerative disorders and cancer.

One of the most prominent epigenetic processes is DNA methylation, where one of the four bases of animal DNA is marked by a methyl group. DNA methylation typically reduces the activity of surrounding genes.

A lot is known about how methyl marks are put onto the DNA, but how they are removed – a process called DNA demethylation – and, thus, how genes are reactivated is still not well understood. In their recent study, published in Nature Structural and Molecular Biology, IMB scientists have identified two proteins, Neil1 and Neil2 that are important for the demethylation of DNA.

"These proteins are a missing link in the chain of events that explain how DNA can be efficiently demethylated," said Lars Schomacher, first author on the paper.

Intriguingly, DNA demethylation has been shown to involve proteins of the DNA repair machinery. Thus epigenetic gene regulation and genome maintenance are linked. Schomacher and his colleagues identified in Neil1 and Neil2 two more repair factors that not only protect the DNA’s integrity but are also involved in DNA demethylation.

The researchers showed that the role of Neils is to boost the activity of another protein, Tdg, which is known to be of central importance for DNA demethylation.

Both the Neils and Tdg are essential proteins for survival and development. Schomacher et al. carried out experiments where they removed either one of these proteins in very early frog embryos. They found that the embryos had severe problems developing and died before reaching adulthood.

Failure in setting and resetting methyl marks on DNA is involved in developmental abnormalities and cancer, where cells forget what type they are and start to divide uncontrollably. Understanding which proteins are responsible for DNA demethylation will help us to understand more about such disease processes, and may provide new approaches to develop treatments for them.

Further details
Schomacher L*, Han D*, Musheev MU*, Arab K, Kienhöfer S, von Seggern A and Niehrs C (2016). Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. Nature Struct Mol Biol, DOI: 10.1038/nsmb.3151 [Epub ahead of print]. (* indicates equal contribution)

Further information about research in the Niehrs group can be found at http://www.imb.de/niehrs.


About the Institute of Molecular Biology gGmbH

The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011 on the campus of Johannes Gutenberg University Mainz (JGU). Research at IMB concentrates on three cutting-edge areas: epigenetics, developmental biology, and genome stability. The institute is a prime example of a successful collaboration between public authorities and a private foundation. The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of ten years to cover the operating costs for research at IMB, while the state of Rhineland-Palatinate provided approximately EUR 50 million for the construction of a state-of-the-art building.
For more information about IMB, please visit http://www.imb.de.

About the Boehringer Ingelheim Foundation

The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical, and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht (1931-1991), a member of the shareholder family of the company Boehringer Ingelheim. With the PLUS 3 Perspectives Program and the Exploration Grants, the foundation supports independent group leaders. It also endows the internationally renowned Heinrich Wieland Prize as well as awards for up-and-coming scientists. In addition, the foundation pledged to donate EUR 100 million to finance the scientific running of the IMB at Johannes Gutenberg University Mainz for ten years. In 2013, the Boehringer Ingelheim Foundation donated a further EUR 50 million to Mainz University.
For more information about the Boehringer Ingelheim Foundation, please visit http://www.boehringer-ingelheim-stiftung.de.

Weitere Informationen:

http://www.uni-mainz.de/presse/20060_ENG_HTML.php - press release ;
http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.3151.html - article ;
https://www.imb-mainz.de - Institute of Molecular Biology (IMB)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>