Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neils help removing epigenetic marks

12.01.2016

Researchers at the Institute of Molecular Biology have identified two proteins important for the demethylation of DNA

Scientists at the Institute of Molecular Biology (IMB) in Mainz have identified a missing piece of the puzzle in understanding how epigenetic marks are removed from DNA.

The research on DNA demethylation sheds new light on a fundamental process that is important in development and diseases such as cancer.

Epigenetics is defined by heritable changes in gene expression that do not derive from changes in the DNA sequence itself. Epigenetic processes play a central role in a broad spectrum of diseases, such as cardiovascular disease, neurodegenerative disorders and cancer.

One of the most prominent epigenetic processes is DNA methylation, where one of the four bases of animal DNA is marked by a methyl group. DNA methylation typically reduces the activity of surrounding genes.

A lot is known about how methyl marks are put onto the DNA, but how they are removed – a process called DNA demethylation – and, thus, how genes are reactivated is still not well understood. In their recent study, published in Nature Structural and Molecular Biology, IMB scientists have identified two proteins, Neil1 and Neil2 that are important for the demethylation of DNA.

"These proteins are a missing link in the chain of events that explain how DNA can be efficiently demethylated," said Lars Schomacher, first author on the paper.

Intriguingly, DNA demethylation has been shown to involve proteins of the DNA repair machinery. Thus epigenetic gene regulation and genome maintenance are linked. Schomacher and his colleagues identified in Neil1 and Neil2 two more repair factors that not only protect the DNA’s integrity but are also involved in DNA demethylation.

The researchers showed that the role of Neils is to boost the activity of another protein, Tdg, which is known to be of central importance for DNA demethylation.

Both the Neils and Tdg are essential proteins for survival and development. Schomacher et al. carried out experiments where they removed either one of these proteins in very early frog embryos. They found that the embryos had severe problems developing and died before reaching adulthood.

Failure in setting and resetting methyl marks on DNA is involved in developmental abnormalities and cancer, where cells forget what type they are and start to divide uncontrollably. Understanding which proteins are responsible for DNA demethylation will help us to understand more about such disease processes, and may provide new approaches to develop treatments for them.

Further details
Schomacher L*, Han D*, Musheev MU*, Arab K, Kienhöfer S, von Seggern A and Niehrs C (2016). Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. Nature Struct Mol Biol, DOI: 10.1038/nsmb.3151 [Epub ahead of print]. (* indicates equal contribution)

Further information about research in the Niehrs group can be found at http://www.imb.de/niehrs.


About the Institute of Molecular Biology gGmbH

The Institute of Molecular Biology gGmbH (IMB) is a center of excellence in the life sciences that was established in 2011 on the campus of Johannes Gutenberg University Mainz (JGU). Research at IMB concentrates on three cutting-edge areas: epigenetics, developmental biology, and genome stability. The institute is a prime example of a successful collaboration between public authorities and a private foundation. The Boehringer Ingelheim Foundation has dedicated EUR 100 million for a period of ten years to cover the operating costs for research at IMB, while the state of Rhineland-Palatinate provided approximately EUR 50 million for the construction of a state-of-the-art building.
For more information about IMB, please visit http://www.imb.de.

About the Boehringer Ingelheim Foundation

The Boehringer Ingelheim Foundation is an independent, non-profit organization committed to the promotion of the medical, biological, chemical, and pharmaceutical sciences. It was established in 1977 by Hubertus Liebrecht (1931-1991), a member of the shareholder family of the company Boehringer Ingelheim. With the PLUS 3 Perspectives Program and the Exploration Grants, the foundation supports independent group leaders. It also endows the internationally renowned Heinrich Wieland Prize as well as awards for up-and-coming scientists. In addition, the foundation pledged to donate EUR 100 million to finance the scientific running of the IMB at Johannes Gutenberg University Mainz for ten years. In 2013, the Boehringer Ingelheim Foundation donated a further EUR 50 million to Mainz University.
For more information about the Boehringer Ingelheim Foundation, please visit http://www.boehringer-ingelheim-stiftung.de.

Weitere Informationen:

http://www.uni-mainz.de/presse/20060_ENG_HTML.php - press release ;
http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.3151.html - article ;
https://www.imb-mainz.de - Institute of Molecular Biology (IMB)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>