Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nature communications: From the plant to the microreactor


Scientists at the Leibniz-Institute of Plant Biochemistry (IPB) in Halle/Saale (Germany) have fully elucidated the biosynthesis of carnosic acid. This discovery allowed the plant researchers around Prof. Alain Tissier to produce the economically valuable plant material by biotechnological means in yeast cells. The project was published in the renowned journal Nature Communications.

Carnosic acid is a natural antioxidant that is found in the leaves of rosemary and sage. It is used worldwide as a preservative and flavor in meat products, oils, fats, sauces and animal feed. Carnosic acid, for which the demand is steadily increasing, is still extracted from rosemary plants, which grow slowly.

Carnosic acid is still obtained from rosemary. However, biotechnological production processes could be developed soon.

Photo: IPB

Carnosic acid

Picture: IPB

Dried leaves of sage or rosemary contain at most 2.5 percent of carnosic acid, necessitating a large amount of plant material to ensure the production of the antioxidant on industrial scale. Furthermore, the complex structure of carnosic acid makes an industrial synthetic process unrealistic.

The biosynthesis of carnosic acid within the plant takes place in several reaction steps, which are catalyzed by different enzymes. The enzyme that catalyzes the last step of the reaction chain had not yet been discovered. This knowledge-gap has now been closed by the IPB researchers.

They discovered an additional, previously unknown intermediate and also new enzymes, which were described and characterized by them. With the knowledge of all involved reaction partners, the scientists were able to introduce the genes coding for the corresponding enzymes into yeast cells and make them produce carnosic acid. This is the first step in the development of a biotechnological production process for the antioxidant.

Carnosic acid is also the starting material for the biosynthesis of many other phenolic diterpenes, which act as bioactive substances against inflammation, cancer and various neurodegenerative diseases.

Also for this reason, it will be interesting to produce carnosic acid in the future with biotechnology-based processes and thus independently of climate fluctuations, soil quality and harvest yields.

Ulschan Scheler, Wolfgang Brandt, Andrea Porzel, Kathleen Rothe, David Manzano, Dragana Bozic, Dimitra Papaefthimiou, Gerd Ulrich Balcke, Anja Henning, Swanhild Lohse, Sylvestre Marillonnet, Angelos K. Kanellis, Albert Ferrer & Alain Tissier. Elucidationof the bioynthesis of carnosic acid and its reconstitution in yeast. Nature Communications 7: 12942, doi:10.1038/ncomms12

Prof. Alain Tissier
Leibniz Institute of Plant Biochemistry
Tel.: +49 345 5582 1500

Weitere Informationen:

Dipl.Biol. Sylvia Pieplow | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>