Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural rubber from dandelions

09.06.2015

Dandelions are modest plants that are an excellent alternative source for a raw material of high demand: natural rubber, the fundamental ingredient in rubber products. Fraunhofer researchers have established the basis for the large-scale production of high quality rubber with Russian dandelion.

Approximately 40,000 products of everyday life contain natural rubber. It’s the material that provides extreme elasticity, tensile strength and low-temperature flexibility in products from mattresses and gloves to adhesive tape and tires. As yet, it has no artificial replacement. However, researchers from the Fraunhofer Institute for Molecular Biology and Applied Ecology IME were able to identify a cost-effective and eco-friendly alternative to the natural rubber tree: the dandelion.


Left to right: Dr. Schulze Gronover, Dr. Recker (Continental Reifen Deutschland GmbH) and Prof. Prüfer make use of the Russian dandelion in the manufacture of car tires.

Dirk Mahler/Fraunhofer

Currently, all our natural rubber comes from Hevea brasiliensis, a tree that grows under subtropical climate. Increasing demands and potential problems with a devestating fungus have made natural rubber into a valuable resource. Southeast Asia accounts for 95% of global production. In order to meet growing demands, producers turn rainforest into agricultural land. Now Professor Dirk Prüfer and his colleague Dr. Christian Schulze Gronover from Fraunhofer IME in Münster are developing Taraxacum kok-saghyz, also known as Russian dandelion, as an efficient replacement for the natural rubber tree. “The plant is extremely resilient, able to grow in moderate climates and even in soil that is not or just barely suited for the cultivation of food and feed crops,” explains Christian Schulze Gronover. “Dandelions also have the advantage of growing anually. The natural rubber tree takes between seven and ten years to deliver the first harvest.”

Dirk Prüfer decided to investigate the dandelion after a sudden insight on a day out. “I was sitting in a meadow in the Sauerland region in Germany, and it was absolutely covered with dandelions. Having plucked the flower off one of them, I was wondering if the expelling white latex contains rubber.” However, Germany’s native dandelions don’t produce sufficient quantities of rubber for being industrially viable. That’s why the researchers subsequently turned their attention to the Russian dandelion, which produces large amounts of natural rubber.

No genetic modification

With the help of precision breeding, the researchers were quickly able to double the amount of natural rubber in the Russian dandelion. This was achieved without genetic modification; instead, Dirk Prüfer and Christian Schulze Gronover analyzed the dandelion’s genome and identified suitable DNA markers. These genetic tools could tell already in a very early stage of plant development if a given plant will possess an efficient rubber production.

Extraction of natural rubber from the plant was another challenge. To this end, the scientists developed an eco-friendly technique whereby only the roots are pulverized because the leaves contain very little rubber. At the end of the process, water is used to separate the resource from the other substances.

New natural rubber successfully undergoes practical testing

The performance of tires made of dandelion natural rubber has already proven in action, and manufacturer Continental has tested a first version. “The dandelion natural rubber has ideal material properties. The tires are equivalent to those made from Hevea natural rubber,” says Dr. Carla Recker of Continental.

Since natural rubber is critical to the quality of many rubber products, industrialized nations in particular regard it as a strategically important resource. Natural rubber obtained from dandelions could reduce the dependence on imports from Asia. However, if the entire world production will be based on dandelion rubber, one would need the size of Austria for its cultivation. Thus, Dirk Prüfer points out that rubber from dandelion will not replace the actual source, but will compensate the additional demand in the future.

For their work on the Russian dandelion and its application as a source of natural rubber, Dirk Prüfer, Christian Schulze Gronover and Carla Recker are recipients of the 2015 Joseph von Fraunhofer Prize.

Weitere Informationen:

http://www.fraunhofer.de/en/press/fraunhofer-awards-ceremony-2015/natural-rubber...

Sabine Dzuck | Fraunhofer Research News

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>