Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural rubber from dandelions

09.06.2015

Dandelions are modest plants that are an excellent alternative source for a raw material of high demand: natural rubber, the fundamental ingredient in rubber products. Fraunhofer researchers have established the basis for the large-scale production of high quality rubber with Russian dandelion.

Approximately 40,000 products of everyday life contain natural rubber. It’s the material that provides extreme elasticity, tensile strength and low-temperature flexibility in products from mattresses and gloves to adhesive tape and tires. As yet, it has no artificial replacement. However, researchers from the Fraunhofer Institute for Molecular Biology and Applied Ecology IME were able to identify a cost-effective and eco-friendly alternative to the natural rubber tree: the dandelion.


Left to right: Dr. Schulze Gronover, Dr. Recker (Continental Reifen Deutschland GmbH) and Prof. Prüfer make use of the Russian dandelion in the manufacture of car tires.

Dirk Mahler/Fraunhofer

Currently, all our natural rubber comes from Hevea brasiliensis, a tree that grows under subtropical climate. Increasing demands and potential problems with a devestating fungus have made natural rubber into a valuable resource. Southeast Asia accounts for 95% of global production. In order to meet growing demands, producers turn rainforest into agricultural land. Now Professor Dirk Prüfer and his colleague Dr. Christian Schulze Gronover from Fraunhofer IME in Münster are developing Taraxacum kok-saghyz, also known as Russian dandelion, as an efficient replacement for the natural rubber tree. “The plant is extremely resilient, able to grow in moderate climates and even in soil that is not or just barely suited for the cultivation of food and feed crops,” explains Christian Schulze Gronover. “Dandelions also have the advantage of growing anually. The natural rubber tree takes between seven and ten years to deliver the first harvest.”

Dirk Prüfer decided to investigate the dandelion after a sudden insight on a day out. “I was sitting in a meadow in the Sauerland region in Germany, and it was absolutely covered with dandelions. Having plucked the flower off one of them, I was wondering if the expelling white latex contains rubber.” However, Germany’s native dandelions don’t produce sufficient quantities of rubber for being industrially viable. That’s why the researchers subsequently turned their attention to the Russian dandelion, which produces large amounts of natural rubber.

No genetic modification

With the help of precision breeding, the researchers were quickly able to double the amount of natural rubber in the Russian dandelion. This was achieved without genetic modification; instead, Dirk Prüfer and Christian Schulze Gronover analyzed the dandelion’s genome and identified suitable DNA markers. These genetic tools could tell already in a very early stage of plant development if a given plant will possess an efficient rubber production.

Extraction of natural rubber from the plant was another challenge. To this end, the scientists developed an eco-friendly technique whereby only the roots are pulverized because the leaves contain very little rubber. At the end of the process, water is used to separate the resource from the other substances.

New natural rubber successfully undergoes practical testing

The performance of tires made of dandelion natural rubber has already proven in action, and manufacturer Continental has tested a first version. “The dandelion natural rubber has ideal material properties. The tires are equivalent to those made from Hevea natural rubber,” says Dr. Carla Recker of Continental.

Since natural rubber is critical to the quality of many rubber products, industrialized nations in particular regard it as a strategically important resource. Natural rubber obtained from dandelions could reduce the dependence on imports from Asia. However, if the entire world production will be based on dandelion rubber, one would need the size of Austria for its cultivation. Thus, Dirk Prüfer points out that rubber from dandelion will not replace the actual source, but will compensate the additional demand in the future.

For their work on the Russian dandelion and its application as a source of natural rubber, Dirk Prüfer, Christian Schulze Gronover and Carla Recker are recipients of the 2015 Joseph von Fraunhofer Prize.

Weitere Informationen:

http://www.fraunhofer.de/en/press/fraunhofer-awards-ceremony-2015/natural-rubber...

Sabine Dzuck | Fraunhofer Research News

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>