Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale factories built to order

03.11.2016

Performing chemical reactions inside tiny droplets can help manufacturers develop greener processes for coating drugs.

A discovery led by Singapore's Agency for Science, Technology and Research (A*STAR) could lead to improvements in the way drugs are delivered to the right parts of the body by uncovering the mechanisms that help oil, water, and free radicals mix in tiny droplets [1][2].


Understanding how radical fragments (red spheres) react with surrounding water molecules to create hydroxyl radicals, while leaving behind hydrophobic residues (black), can help green chemistry researchers. © 2016 A*STAR Institute of Chemical and Engineering Sciences

Emulsion polymerization is an emerging technology used to produce enormous chain-like molecules called polymers inside oil-filled drops suspended in water. This approach enables producers of goods such as latex paints to do away with traditional oil-based solvents, which helps them meet stricter environmental controls. Recently, researchers have discovered that ‘mini-emulsions’, in which droplets are shrunk to nanoscale sizes using powerful blenders and stabilized with fatty molecules, can produce nanoparticles for applications including controlled drug release.

Alex van Herk from the A*STAR Institute of Chemical and Engineering Sciences explains that in mini-emulsions, each droplet can be regarded as a ‘nanoreactor’ — a segregated system where all the ingredients for polymerization are present in one spot. Once a highly reactive free radical enters the drop, the small molecules inside link into chains. “The nanoreactors grow completely independently, and we can achieve very high reaction rates,” he says.

This polymerization only works when one free radical enters a nanoreactor. However, the molecules that generate free radicals, known as initiators, generally produce them in pairs. To better understand these radical movements, van Herk and colleagues from the Netherlands and the United Kingdom investigated the effects of using initiators that either repelled or attracted water molecules.

Typical initiators are water-soluble and researchers propose that they create pairs of free radicals in water where one of the free radicals enters the nanoreactor and starts the polymerization. However, when the initiator is a water-repelling molecule, such as lauroyl peroxide, theory predicts the chemical reaction will be hindered because the two radicals in a confined space would easily recombine and the polymerization process would not start.

Surprisingly, the A*STAR-led team found mini-emulsion polymerization proceeded rapidly and completely using lauroyl peroxide initiators. To explain this discrepancy, the team deduced that a free radical must leave by an alternative mechanism, known as chain transfer, which transforms one of the water molecules surrounding the nanoreactor into a hydroxyl radical compound. The remaining radical produces latex nanoparticles that correspond one-to-one with the initial droplet size — a benefit for manufacturers seeking to predict morphologies with exact specifications.

“Industry is only modestly adopting mini-emulsion polymerization, partly because its mechanism is not fully understood and controllable yet,” says van Herk. “These findings give us a better edge to design and produce special nanoparticle morphologies such as low-cost nanocapsules.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences. For more information about the team’s research, please visit the Polymer Engineering & Characterisation group webpage.

Associated links

Journal information

[1] Jansen, T. G. T., Meuldijk, J., Lovell, P. A. & van Herk, A. M. On the miniemulsion polymerization of very hydrophobic monomers initiated by a completely water-insoluble initiator: thermodynamics, kinetics, and mechanism. Journal of Polymer Science Part A: Polymer Chemistry 54, 2731–2745 (2016).
[2] Jansen, T. G. T., Meuldijk, J., Lovell, P. A. & van Herk, A. M. On the reaction characteristics of miniemulsion polymerization with aqueous phase initiation — Experiments and modeling. Macromolecular Reaction Engineering 9, 19–31 (2015).

A*STAR Research | Research SEA

Further reports about: A*STAR Nanoparticles Polymer free radicals polymerization water molecules

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>