Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutations in FTO and Dopamine Receptor Genes Increase Risk of Obesity and Diabetes


In the development of obesity and diabetes, signals from the brain play an important role. Here an important neurotransmitter is dopamine. DZD scientists from Tübingen and Munich, together with Swedish and American colleagues, have investigated how mutations in the obesity risk gene FTO and variants of the dopamine D2 receptor gene interact. Their results suggest that people in whom both genes are altered have a higher risk of developing obesity and diabetes.

More and more people throughout the world suffer from obesity. Currently about 500 million people are obese, including about 15 million in Germany. The causes of obesity are often an unhealthy diet, too little physical activity and a genetic predisposition. In particular, people with an altered obesity risk gene called FTO (FTO is the abbreviation for “fat mass and obesity-associate) are more often obese.

Insulin sensitivity in the caudate nucleus depends on mutations in the FTO gene and the dopamine D2 receptor gene


But how do the gene variants work? Why can they cause people to become overweight? “FTO is strongly expressed in the central nervous system,” said PD Dr. Martin Heni of the Institute for Diabetes Research and Metabolic Diseases (IDM) of Helmholtz Zentrum München at the University of Tübingen.

“Studies on rodents show that altered FTO influences dopamine signaling in the brain and thus leads to higher food intake.” The “reward hormone” dopamine plays an important role in the regulation of appetite. If the information that you have already eaten is not transmitted correctly, then your desire for food increases. One of the causes for this may be an insufficient number of dopamine D2 receptors to which the neurotransmitter binds.

Researchers of the German Center for Diabetes Research have now investigated the effects when both the FTO gene and the gene for the dopamine D2 receptor, ANKK1/Taq1A, are mutated. For this purpose, they examined samples from the Tübingen Family Study (n = 2245) and the Malmo Diet and Cancer Study (n = 2921). They found that about 20 percent of the participants were carriers of both mutations.

“Our studies show that when both genes are mutated, this can have a far-reaching effect on health. If due to the ANKK1 polymorphism there are fewer dopamine D2 receptors, those affected with mutated FTO have a higher percentage of body fat, more abdominal fat and low sensitivity to insulin in the body. In addition, in the caudate nucleus, the brain region that is important for dopamine metabolism, insulin sensitivity was altered,” said Heni, summarizing the results. “From this we conclude that the effects of a mutated FTO gene depend on the number of dopamine D2 receptors,” added his IDM colleague Professor Hubert Preissl. If an affected individual is a carrier of both mutated genes, his or her risk of diabetes and obesity is increased. “Unfortunately, this unfavorable combination of both gene mutations is present in about one-fifth of the population,” said Heni.

The findings suggest that FTO influences dopamine signaling not only in rodents, but also in humans. This interaction not only appears to be important for body weight, but also for the metabolism in the entire body. FTO gene mutations are important risk factors for overweight and diabetes. However, the effects are less critical if there are sufficient dopamine D2 receptors.

Background Information
The fat mass and obesity-associate FTO gene is not a gene in the classical sense. It consists of 47,000 nucleotides on chromosome 16. There, 87 gene variants have been discovered, which together are detectable in about 44 percent of all Europeans and increase the risk of obesity in this population. Therefore, scientists suspect that one or more control genes are involved, which favor weight gain through their effect on other genes.

Dopamine is an important, predominantly stimulating neurotransmitter. It is commonly known as the “reward hormone” or “happiness hormone”. For example, the neurotransmitter is responsible for making people feel happy after an enjoyable meal. However, if there are fewer dopamine D2 receptors in the brain, people must eat more to attain this feeling of happiness. One cause for a low density of dopamine D2 receptors is the gene variant ANKK1/TaqIA.

Tübingen Family Study
In the Tübingen Family Study, scientists investigate people at increased risk for type 2 diabetes. Many study participants already have a disturbed glucose tolerance or blood glucose levels in the upper normal range.

PD Dr. med. Martin Heni
Universitätsklinikum Tübingen
Medizinische Klinik, Abteilung IV (Endokrinologie, Diabetologie, Nephrologie, Angiologie und klinische Chemie)
Otfried-Müller-Str. 10, 72076 Tübingen
E-Mail: Martin.Heni (at)

Birgit Niesing | idw - Informationsdienst Wissenschaft
Further information:

Further reports about: Diabetes dopamine gene mutations genes hormone mutations

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>