Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Münster researchers have discovered a possible new treatment for regulating inflammation

05.06.2018

Researchers at the Cells-in-Motion Cluster of Excellence have decoded a mechanism found at the beginning of almost every inflammatory response. Their study provides a new approach to develop novel treatment options for many inflammatory disorders with many fewer side effects compared to current drugs.

In the body, the immune system often begins its response to various attackers in the same way: the body activates immune cells, so-called phagocytes, which migrate to sites of inflammation caused by, for example, foreign pathogens or damaged tissue. There, the phagocytes release certain proteins, including the S100A8/S100A9 heterodimeric protein complex, which triggers or amplifies the inflammatory reaction at the site of the disease.


Binding model: The S100A8/S100A9 protein complex (grey/beige) binds to the TLR4 receptor (rainbow-coloured) and MD2 (red) and triggers immune reactions in cells.

Vogl et al./ J. Clin. Invest.

However, if too many of these complexes are released, they can exacerbate the disease; for example, this happens in the case of autoimmune, rheumatic or dermatological diseases. Researchers at the Cells-in-Motion (CiM) Cluster of Excellence at the University of Münster have now decoded how the activity of these proteins is precisely regulated.

The leading scientists of the study, the immunologists Prof. Thomas Vogl and Prof. Johannes Roth, now want to use these novel fundamental insights to develop new treatment options to combat autoimmune diseases, arthritis, allergies or inflammatory diseases of the bowel, lung or cardiovascular system. The study was published in the "Journal of Clinical Investigation".

The detailed story

Many scientific publications have already described the tasks of the two proteins S100A8 and S100A9. But so far, it has not been clear to researchers whether these two proteins acted alone or in conjunction with each other. The Münster researchers have now been able to show that the proteins always work as a heterodimeric protein complex composed of both S100A8 and S100A9; in other words, a complex where both proteins are firmly associated. As soon as it is released, the heterodimer complex binds to a TLR4-expressing cell, triggering a suitable immune response via this receptor

. Importantly, the S100A8/S100A9 heterodimer complex only has a short life time to spark this initial impulse: If it does not find a suitable target cell for activation, two individual heterodimers associate to form a heterotetramer; in this form, each heterodimer complex is inactive. This mechanism guarantees that the body will only trigger an immune reaction where needed – in other words, the inflammatory reaction remains localized.

The researchers also showed that as soon as this regulation is disturbed so not all of the excess S100A8/S100A9 heterodimer complexes can form tetramers, the result is an exacerbation of disease: "Too many heterodimers remain active, trigger a strong immune response and act systemically in the entire body", explains Prof. Thomas Vogl, the lead author of the study. This is a process that is, for example, behind blood poisoning – but it is also relevant for many autoimmune diseases, rheumatoid arthritis, allergies, inflammatory skin diseases and even cardiovascular diseases.

Developing new treatment options with ideally no side effects

These findings by the Münster immunologists may lead to new approaches for treating many inflammatory diseases. Currently, new drugs are already being used to totally block the TLR4 receptor signaling pathway to inhibit misguided immune responses. However, one problem is that sometimes the body has to combat bacteria at the same time. As the immune system is blocked, the TLR4 receptor can no longer fulfill this important function anymore.

"This is why we’re searching for antibodies which specifically only block the S100-TLR4 axis, while the receptor is untouched, respectively free on the bacterial side", says Thomas Vogl. "These antibodies should specifically block only the active heterodimers and, in the following, weaken the immune reaction only locally, at the site of inflammation.

The TLR4 receptor, which is important for immune defense, remains untouched and can trigger the suitable immune response in the case of any bacterial danger." Drugs developed according to this new approach to treat, for example, autoinflammatory disorders would therefore have far fewer side effects for patients than currently existing pharmaceuticals.

The next step for the researchers is to work together with companies to find suitable antibodies and develop pharmaceuticals for treating diseases accompanied by overwhelming immune reactions. The first patents have already been applied for. It will take years, however, before drugs are available to deactivate excess S100A8/S100A9 in the human body and thus prevent unwanted immune reactions.

The study is the result of interdisciplinary collaborations between five different CiM laboratories. "Without the expertise and the help of all other involved researchers, we would not have been able to elucidate these interesting results", says Thomas Vogl. The Münster molecular biologists Dr. Athanasios Stratis and Dr. Viktor Wixler, for example, investigated genetically modified mice necessary for the study. The nuclear physicians Prof. Michael Schäfers and Dr. Sven Hermann contributed their expertise in imaging, enabling researchers to visualize the distribution of the S100 proteins in mice.

Funding

The study was funded by the Cells-in-Motion Cluster of Excellence and the Interdisciplinary Center for Clinical Research of the University of Münster. Financial support also came from the German Research Foundation through the Collaborative Research Centre 1009 "Breaking Barriers" at Münster University and through the "ImmunoSensation" Cluster of Excellence in Bonn. The German Federal Ministry of Education and Research also provided financial support.

Original publication (DOI: 10.1172/JCI89867)

Vogl T, Stratis A, Wixler V, Voller T, Thurainayagam S, Jorch SK, Zenker S, Dreiling A, Chakraborty D, Frohling M, Paruzel P, Wehmeyer C, Hermann S, Papantonopoulou O, Geyer C, Loser K, Schafers M, Ludwig S, Stoll M, Leanderson T, Schultze JL, Konig S, Pap T, Roth J. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest 2018;128: 1852-1866.

Weitere Informationen:

https://www.jci.org/articles/view/89867 - Original publication
https://www.uni-muenster.de/Cells-in-Motion/de/people/all/roth.php - Prof. Johannes Roth

Sibylle Schikora | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>