Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moving molecule writes letters


Caging of molecules allows investigation of equilibrium thermodynamics

On the search for high performance materials for applications such as gas storage, thermal insulators or dynamic nanosystems it is essential to understand the thermal behavior of matter down to the molecular level. Classical thermodynamics average over time and over a large number of molecules. Within a three dimensional space single molecules can adopt an almost infinite number of states, making the assessment of individual species nearly impossible.

The nanopore restricts the the freedom of movement of the adsorbed single molecule thus enabling scientists at Technische Universitat Munchen and University Lingkoping to model the equilibrium thermodynamics of single molecules.

Credit: Carlos-Andres Palma / TUM

Now researchers from Technische Universität München (TUM) and Linköping University (LIU) have developed a methodology, which allows to explore equilibrium thermodynamics of single molecules with atomic resolution at appreciable temperatures. The breakthrough study is based on two pillars: a technology which allows to cage molecules within two-dimensional nanopores and extensive computational modelling.

Trapped in two dimensions

At the Chair of Molecular Nanoscience and Chemical Physics of Interfaces at TU München, led by Prof. Dr. Johannes V. Barth, PD Dr. Florian Klappenberger developed the method to produce high-quality metal-organic networks on a silver surface. The network forms nanopores which restrict the freedom of movement of adsorbed single molecules in two-dimensions. Using scanning tunneling microscopy the researchers were able to track their motions at different temperatures with sub-nanometer resolution.

Parallel to the experiments, the researchers worked with sophisticated computer models to describe the temperature dependence of the dynamics of these single trapped molecules. "We have applied state-of-the-art supercomputer calculations to understand the interactions and energy landscape determining the motion of the molecules", says Jonas Björk of Linköping University.

Comparing experimental and modeled data the scientists unraveled that under certain conditions the integral theory approaches a simple projection of the molecular positions in space. This approach is central to statistical mechanics, but has never before been challenged to reproduce an experiment, due to the practically infinite molecular positions and energies one needed to consider without the nanoscale confinement.

Analogy to biology

"It was extremely exciting to employ two-dimensional networks as a confinement strategy to reduce the available conformational space of a single molecule, like a chaperone does with a protein", says Dr. Carlos-Andres Palma, the lead author of the study. "In analogy to biology, such form of confinement technology has the potential to establish sensors, nanomachines and possibly logics controlled by and made of molecular distributions."

Applying their knowledge of characteristic equilibrium configurations, the researchers carefully modulated the nanopore, thus making a single molecule write letters of the alphabet such as L, I and U, just by fine-tuning the temperature.

The research was funded by the European Research Council (ERC Advanced Grant MolArt) and the Swedish Research Council. The Swedish National Supercomputing Center provided supercomputing ressources. The research group of Professor Barth is member of the Catalysis Research Center (CRC) of the TUM.


Visualization and thermodynamic encoding of single-molecule partition function projections
Carlos-Andres Palma, Jonas Björk, Florian Klappenberger, Emmanuel Arras, Dirk Kühne, Sven Stafström, Johannes V. Barth
Nature Communications, Feb 23, 2015 - DOI: 10.1038/ncomms7210

Media Contact

Andreas Battenberg


Andreas Battenberg | EurekAlert!

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>