Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Moth takes advantage of defensive compounds in Physalis fruits


Researchers from the Max Planck Institute for Chemical Ecology found that the specialist moth Heliothis subflexa benefits from secondary plant components by turning the original defensive function of these compounds into its own advantage. Withanolides, which are present in Physalis plants, usually act as immune suppressants and feeding deterrents in insects. Surprisingly, Heliothis subflexa uses these plant defenses as immune-system boosters. Moreover, withanolides protect the moth from harmful effects caused by pathogenic bacteria. The new study demonstrates a unique benefit to host-plant specialization. (Nature Communications, August 2016, doi: 10.1038/NCOMMS12530).

Insects versus plants in the evolutionary arms race: specialists and generalists

The larva of the specialist moth Heliothis subflexa climbs the calyx of a Physalis. The calyx provides the caterpillar with a perfect shelter from enemies, once it has entered it.

Andrea Barthel / Max Planck Institute for Chemical Ecology

In order to survive and to repel herbivores, many plants defend themselves by producing toxic or deterrent substances. In the course of evolution, many insects have succeeded in adapting to the defensive chemistry of their host plants and thereby circumventing plants’ defense mechanisms.

However, the plants have also adapted their defensive system to further protect themselves against their enemies, which, in turn, generated counter-adaptations in the insects; biologists refer to this phenomenon as an “evolutionary arms race” between plants and insects. Many insects are plant pests which can be categorized as “specialists” and “generalists.”

Whereas generalists feed on many different plants, specialists have adapted to one or few closely related plant species as their food. The moth species Heliothis subflexa analyzed in this new study is such a host specialist.

Withanolides provide H. subflexa with direct and indirect protection

The researchers measured and compared the effects of withanolides on relative weight gains, survival rates and the immune status in two moth species: the specialist Heliothis subflexa and the generalist Heliothis virescens. They knew from earlier studies that the specialist moth possesses a weaker immune response compared to the closely related generalist.

“We were surprised to find that only Heliothis subflexa benefits from withanolides by increasing larval growth and immune system activity, but not its close relative, Heliothis virescens,” says Hanna M. Heidel-Fischer, the leader of the study.

Furthermore, the research team from the Department of Entomology found that withanolides protect the specialist, but not the generalist, from the growth-suppressive effects of an infection caused by the bacterial pathogen Bacillus thuringiensis. “Larvae of Heliothis subflexa could theoretically profit in two ways from Physalis fruits: First, withanolides display antibacterial and immune stimulant activity. Furthermore, the Physalis fruit is covered by a calyx that creates a so-called enemy-free space,” concludes co-author Heiko Vogel.

Physalis: A plant with promising properties

Plants of the genus Physalis, also known as ground cherries, have a long history as a medicinal herb in India and the Middle East. The medicinal importance of Physalis plants is mainly due to the presence of steroidal lactones, the withanolides. Withanolides exhibit potential anti-cancer, anti-inflammatory and apoptotic activities. However, the actual role of withanolides in Physalis plants is defense against herbivores. Withanolides have been shown to be potent anti-feeding deterrents as well as immunosuppressants in insects.

These effects can be attributed to possible interactions of withanolides with signal transduction pathways in the cells. For instance, previous studies have shown that withanolides may cause molting disorders in insects, suggesting that the anti-feeding and immunosuppressive effects arise from the disruptive effect of withanolides on the development of non-adapted insects. These toxic effects of withanolides on herbivorous insects suggest an adaptive benefit, since few insect species are known to feed on Physalis plants with impunity.

Heliothis subflexa: A Physalis specialist

Larvae of the Heliothis subflexa moth are probably best known for their ability to feed on Physalis plants, a plant genus that includes species also attractive to humans, such as the cape gooseberry and tomatillo. In contrast to their close relative Heliothis virescens, a generalist that feeds on at least 14 different plant families but not on Physalis, Heliothis subflexa larvae feed exclusively on Physalis fruits, and it is the only Heliothis species to do so. Physalis fruits are enclosed by a thin-walled, inflated calyx called a “lantern”.

The lantern provides a so-called enemy-free space for fruit-feeding larvae of Heliothis subflexa, which could be demonstrated in earlier studies. However, the impact of withanolides on specialized Heliothis subflexa had not been evaluated prior to this study. With the known immunosuppressive properties of withanolides in mind, the researchers aimed to examine the specialization of Heliothis subflexa on Physalis in the context of ecological immunology.

“Ecological immunology combines classical studies of the immune system with an ecological perspective to evaluate the costs and benefits of defense against pathogens in the natural environment, and the manner in which natural selection shapes the immune system,” explains Andrea Barthel, the first author of the publication. Further studies will now focus on the mechanism by which the specialist moth circumvents plant defenses. Moreover, experiments are planned to elucidate the effect withanolides have on the bacterial communities on the plant surface as well as in the gut of the specialist insect. [AB/HHF/AO]

Original Publication:
Barthel, A., Vogel, H., Pauchet, Y., Pauls, G., Kunert, G., Groot, A. T., Boland, W., Heckel, D. G., Heidel-Fischer, H. (2016). Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications. DOI: 10.1038/NCOMMS12530

Further Information:
Hanna Heidel-Fischer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1516,

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail

Download high-resolution images via

Weitere Informationen: Department of Entomology

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>