Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016

Researchers from the Max Planck Institute for Chemical Ecology found that the specialist moth Heliothis subflexa benefits from secondary plant components by turning the original defensive function of these compounds into its own advantage. Withanolides, which are present in Physalis plants, usually act as immune suppressants and feeding deterrents in insects. Surprisingly, Heliothis subflexa uses these plant defenses as immune-system boosters. Moreover, withanolides protect the moth from harmful effects caused by pathogenic bacteria. The new study demonstrates a unique benefit to host-plant specialization. (Nature Communications, August 2016, doi: 10.1038/NCOMMS12530).

Insects versus plants in the evolutionary arms race: specialists and generalists


The larva of the specialist moth Heliothis subflexa climbs the calyx of a Physalis. The calyx provides the caterpillar with a perfect shelter from enemies, once it has entered it.

Andrea Barthel / Max Planck Institute for Chemical Ecology

In order to survive and to repel herbivores, many plants defend themselves by producing toxic or deterrent substances. In the course of evolution, many insects have succeeded in adapting to the defensive chemistry of their host plants and thereby circumventing plants’ defense mechanisms.

However, the plants have also adapted their defensive system to further protect themselves against their enemies, which, in turn, generated counter-adaptations in the insects; biologists refer to this phenomenon as an “evolutionary arms race” between plants and insects. Many insects are plant pests which can be categorized as “specialists” and “generalists.”

Whereas generalists feed on many different plants, specialists have adapted to one or few closely related plant species as their food. The moth species Heliothis subflexa analyzed in this new study is such a host specialist.

Withanolides provide H. subflexa with direct and indirect protection

The researchers measured and compared the effects of withanolides on relative weight gains, survival rates and the immune status in two moth species: the specialist Heliothis subflexa and the generalist Heliothis virescens. They knew from earlier studies that the specialist moth possesses a weaker immune response compared to the closely related generalist.

“We were surprised to find that only Heliothis subflexa benefits from withanolides by increasing larval growth and immune system activity, but not its close relative, Heliothis virescens,” says Hanna M. Heidel-Fischer, the leader of the study.

Furthermore, the research team from the Department of Entomology found that withanolides protect the specialist, but not the generalist, from the growth-suppressive effects of an infection caused by the bacterial pathogen Bacillus thuringiensis. “Larvae of Heliothis subflexa could theoretically profit in two ways from Physalis fruits: First, withanolides display antibacterial and immune stimulant activity. Furthermore, the Physalis fruit is covered by a calyx that creates a so-called enemy-free space,” concludes co-author Heiko Vogel.

Physalis: A plant with promising properties

Plants of the genus Physalis, also known as ground cherries, have a long history as a medicinal herb in India and the Middle East. The medicinal importance of Physalis plants is mainly due to the presence of steroidal lactones, the withanolides. Withanolides exhibit potential anti-cancer, anti-inflammatory and apoptotic activities. However, the actual role of withanolides in Physalis plants is defense against herbivores. Withanolides have been shown to be potent anti-feeding deterrents as well as immunosuppressants in insects.

These effects can be attributed to possible interactions of withanolides with signal transduction pathways in the cells. For instance, previous studies have shown that withanolides may cause molting disorders in insects, suggesting that the anti-feeding and immunosuppressive effects arise from the disruptive effect of withanolides on the development of non-adapted insects. These toxic effects of withanolides on herbivorous insects suggest an adaptive benefit, since few insect species are known to feed on Physalis plants with impunity.

Heliothis subflexa: A Physalis specialist

Larvae of the Heliothis subflexa moth are probably best known for their ability to feed on Physalis plants, a plant genus that includes species also attractive to humans, such as the cape gooseberry and tomatillo. In contrast to their close relative Heliothis virescens, a generalist that feeds on at least 14 different plant families but not on Physalis, Heliothis subflexa larvae feed exclusively on Physalis fruits, and it is the only Heliothis species to do so. Physalis fruits are enclosed by a thin-walled, inflated calyx called a “lantern”.

The lantern provides a so-called enemy-free space for fruit-feeding larvae of Heliothis subflexa, which could be demonstrated in earlier studies. However, the impact of withanolides on specialized Heliothis subflexa had not been evaluated prior to this study. With the known immunosuppressive properties of withanolides in mind, the researchers aimed to examine the specialization of Heliothis subflexa on Physalis in the context of ecological immunology.

“Ecological immunology combines classical studies of the immune system with an ecological perspective to evaluate the costs and benefits of defense against pathogens in the natural environment, and the manner in which natural selection shapes the immune system,” explains Andrea Barthel, the first author of the publication. Further studies will now focus on the mechanism by which the specialist moth circumvents plant defenses. Moreover, experiments are planned to elucidate the effect withanolides have on the bacterial communities on the plant surface as well as in the gut of the specialist insect. [AB/HHF/AO]

Original Publication:
Barthel, A., Vogel, H., Pauchet, Y., Pauls, G., Kunert, G., Groot, A. T., Boland, W., Heckel, D. G., Heidel-Fischer, H. (2016). Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications. DOI: 10.1038/NCOMMS12530
http://dx.doi.org/10.1038/NCOMMS12530

Further Information:
Hanna Heidel-Fischer, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1516, hfischer@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Weitere Informationen:

http://www.ice.mpg.de/ext/index.php?id=entomology Department of Entomology

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>