Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquitoes and malaria: Scientists pinpoint how biting cousins have grown apart

28.11.2014

Certain species of mosquitoes are genetically better at transmitting malaria than even some of their close cousins, according to a multi-institutional team of researchers including Virginia Tech scientists.

Of about 450 different species of mosquitoes in the Anopheles genus, only about 60 can transmit the Plasmodium malaria parasite that is harmful to people. The team chose 16 mosquito species that are currently found in Africa, Asia, Europe, and Latin America, but evolved from the same ancestor approximately 100 million years ago.

Today, the 16 species have varying capabilities for transmitting malaria and adapting to new environments. The team sequenced their genomes to better understand the evolutionary science behind the differences.

The results, published in today's (Nov. 27, 2014) issue of Science, may advance understanding about the biological differences between mosquitoes that transmit malaria, and ultimately, how species might be more precisely controlled to stop transmission.

"With the availability of genome sequences from Anopheles mosquitoes of divergent lineages, variable adaptations, and differing disease-transmission abilities, we now have the exciting opportunity to significantly improve our understanding of these important malaria vectors and develop new strategies to combat malaria and other mosquito-borne diseases," said Zhijian Tu, a professor of biochemistry in the College of Agriculture and Life Sciences, and a Fralin Life Science Institute affiliate.

The research was led by Daniel Neafsey, a scientist with the Broad Institute; Robert Waterhouse, a Marie Curie International Outgoing Fellow at the Massachusetts Institute of Technology; and Nora Besansky, a professor from the University of Notre Dame.

In a second related paper, also published today in Science, a key finding was that the most dangerous species, Anopheles gambiae, is able to increase its transmission capabilities by swapping genes at the chromosome level.

"We found out that multiple rearrangements on the sex chromosome prevent the species from completely intermixing, while traits enhancing malaria transmission capabilities can cross species boundaries if other chromosomes encode them," said Igor Sharakhov, an associate professor of entomology in the College of Agriculture and Life Sciences and a Fralin Life Science Institute affiliate.

The results advance the idea that a genetic process called introgression, where genes from one species flow into another, plays a role in evolution, in this case by enhancing the capacity of mosquitoes to transmit the malaria parasite.

The research in the second paper was led by Matthew Hahn, a professor of biology and informatics at Indiana University, and Besansky.

Other Virginia Tech co-authors involved in the research include Brantley Hall of Christiansburg, Va., a doctoral student in the Genetics, Bioinformatics, and Computational Biology program; Xiaofang Jiang of Wuhan City, China, a doctoral student in the Genetics, Bioinformatics, and Computational Biology program; Anastasia Naumenko of Kurgan, Russia, a doctoral student in entomology in the College of Agriculture and Life Sciences; Ashley Peery of Christiansburg, Va., a doctoral student in entomology in the College of Agriculture and Life Sciences; Chunhong Mao, a senior project associate at the Virginia Bioinformatics Institute, and Maria Sharakhova, a research scientist in entomology in the College of Agriculture and Life Sciences and a Fralin Life Science Institute affiliate.

Lindsay Taylor Key | EurekAlert!

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>