Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More Than Bugs: Spiders Also Like to Eat Vegetarian


Spiders are known to be the classic example of insectivorous predators. Zoologists from the University of Basel, the US and UK have now been able to show that their diet is more diverse than expected. Their findings show that spiders like to spice up their menu with the occasional vegetarian meal. The Journal of Arachnology has published the results.

Although traditionally viewed as a predator of insects, researchers have become increasingly aware that spiders are not exclusively insectivorous. Some spiders have been shown to enrich their diets by occasionally feasting on fish, frogs or even bats. A new study by Zoologists from the University of Basel, Brandeis University (US) and Cardiff University (UK) now shows evidence of spiders eating plant food as well.

Adult female jumping spider Maevia inclemens drinking nectar at the extrafloral nectaries of a Prunus shrub. It presses its mouthparts into the nectary opening imbibing nectar.

David E. Hill, Peckham Society, Simpsonville, South Carolina

Plants as diet supplement

The researchers gathered and documented numerous examples from literature of spiders eating plant food. According to their systematic review, spiders from ten families have been reported feeding on a wide variety of different plant types such as trees, shrubs, weeds, grasses, ferns or orchids. They also show a diverse taste when it comes to the type of plant food: nectar, plant sap, honeydew, leaf tissue, pollen and seeds are all on the menu.

The most prominent group of spiders engaged in plant-eating are Salticidae – a diurnal spider family with characteristically large anterior median eyes. Salticidae were attributed with up to 60 percent of all plant-eating incidents documented in this study. As plant-dwelling, highly mobile foragers with excellent capability to detect suitable plant food, these spiders seems to be predestined to include some plant food in their diets.

Global feeding behavior

Spiders feeding on plants is global in its extent, as such behavior has been reported from all continents except Antarctica. However, it is documented more frequently from warmer areas. The researchers suggest that this might be due to the fact that a larger number of the reports relate to nectar consumption which has its core distribution in warmer areas where plants secreting large amounts of nectar are widespread.

“The ability of spiders to derive nutrients from plants is broadening the food base of these animals; this might be a survival mechanism helping spiders to stay alive during periods when insects are scarce”, says lead author Martin Nyffeler from the University of Basel in Switzerland. “In addition, diversifying their diet with plant is advantageous from a nutritional point of view, since diet mixing is optimizing nutrient intake.” However, the extent to which the different categories of plant food contribute to the spiders’ diet is still largely unexplored.

Original source
Martin Nyffeler, Eric J. Olson, William O.C. Symondson
Plant-eating by spiders
Journal of Arachnology (2016) 44: 15-27 | doi: 10.1636/P15-45.1

Further information
PD Dr. Martin Nyffeler, University of Basel, Department of Environmental Sciences, Tel. +41 61 702 07 03, email:

Weitere Informationen:

Reto Caluori | Universität Basel

Further reports about: Environmental Sciences insects nectar nutrient intake spiders

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>