Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Zippers Hold Golgi Membranes Together

08.09.2015

The Golgi apparatus serves as a cellular post office, sending the cell’s many proteins to their correct destinations. In order to mark and sort the proteins, the Golgi has an elaborate architecture.

It consists of flat membrane-enclosed compartments (called cisternae) that are densely packed on top of each other, like a stack of pancakes. Researchers at the Max Planck Institute of Biochemistry in Martinsried, Germany, have now identified structures within these cisternae.


The image shows the 3D molecular structure of a membrane-linking protein array (color), extracted from a cryo-tomogram of the native Golgi (greyscale).

Sahradha Albert / Copyright: MPI of Biochemistry

“Using cryo-electron tomography, we discovered that the cisterna membranes are held together by linker proteins,” explains Benjamin Engel, first author of the study. Their results have been published in the journal PNAS.

After being produced at the endoplasmic reticulum, proteins enter the Golgi apparatus and travel through its stacks of cisterna membranes. As the proteins move through the cisternae, they receive a variety of modifications and are finally sorted into vesicles for delivery to different locations inside and outside the cell.

The elaborate membrane architecture of the Golgi is crucial for regulating the modification and sorting of cargo proteins, as different Golgi enzymes are localized to specific cisterna stacks. However, many questions remain about how the Golgi architecture is established. Researchers at the MPI of Biochemistry helped answer these questions by using in situ cryo-electron tomography to identify new molecular structures inside the Golgi of the alga Chlamydomonas.

Until recently, researchers could only use traditional electron microscopy to look closely at cellular structures. However, the sample preparation steps required for this technique can damage the specimen and thus prevent the observation of fine molecular details.

Scientists in the “Molecular Structural Biology“ Department, led by Prof. Wolfgang Baumeister, have engineered a method called in situ cryo-electron tomography. The cell is rapidly frozen to preserve its delicate structure and then thinned with a focused ion beam, revealing the cellular interior. Next, an electron microscope is used to acquire a three-dimensional view of the unperturbed molecular environment inside the cell.

Experts in the Golgi field assumed for a long time that the cisterna stacks were not held together by linker proteins. By using cryo-electron tomography to look at the Golgi apparatus, Benjamin Engel and his colleagues discovered arrays of proteins between the cisterna membranes (see figure), which had gone unseen using other techniques. “The way the protein arrays hold two Golgi membranes together is similar to how a zipper works when you put on a jacket”, explains PhD student Shoh Asano, co-author of the study.

The researchers believe that the protein arrays may have several functions to help the Golgi carry out its role as the cell’s post office. Do these structures define a sub-compartment of the Golgi that accelerates the enzyme reactions used to modify cargo proteins? Do the protein arrays physically force larger cargo proteins to the periphery of the Golgi, where they are sorted into vesicles for delivery? These are questions that Benjamin Engel and his colleagues want to solve in the future.

Original publication:
B. D. Engel, M. Schaffer, S. Albert, S. Asano, J. M. Plitzko and W. Baumeister: In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences USA, September 8, 2015
Doi: 10.1073/pnas.1515337112

Contact
Prof. Dr. Wolfgang Baumeister
Molecular Structural Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: baumeist@biochem.mpg.de
http://www.biochem.mpg.de/baumeister

Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en/news - More press releases of the MPI of Biochemistry
http://www.biochem.mpg.de/baumeister - Website of the Research Department "Molecular Structural Biology" (Wolfgang Baumeister)

Anja Konschak | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>