Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular volume control

22.08.2017

About two years ago, scientists from the University of Würzburg discovered that a certain class of receptors is capable of perceiving mechanical stimuli. Now they have begun to unravel the molecular mechanisms behind the discovery.

The receptor studied by scientists from the universities of Würzburg and Leipzig over the past years works similarly to the volume control of a stereo which enhances or attenuates the incoming signal. The receptor in question is called latrophilin/CIRL.


The larval Drosophila chordotonal organ seen under the scanning electron microscope. This sensory functional unit modulates the processing of mechanical stimuli by means of the latrophilin receptor.

(Photo: Scholz et al., 2017)

A little more than two years ago, the researchers had surprised the scientific community by proving that certain receptors, including latrophilin, respond to mechanical stimuli from the environment for example vibration, sound waves or expansion. By doing so, the receptors help organisms to hear, perceive movements and control their own movements.

How the information gets inside the cell

At the time, however, the details of the receptors' contribution were still unclear, i.e. how the process works at the molecular level. In the meantime, the researchers have been able to shed light on some crucial details. They present their results in the current issue of the scientific journal eLife. The lead authors of the study are Dr Robert Kittel, who heads a working group at the Institute of Physiology/Department of Neurophysiology at the University of Würzburg, and Professor Tobias Langenhan, who recently relocated from Würzburg to the University of Leipzig.

"In order for cells to perceive and respond to external stimuli, the information must somehow get inside the cell," Robert Kittel explains the central aspect of the study. This may be accomplished through ion channels where a mechanical stimulus is converted into an electrical response in a very straightforward and fast process.

With the latrophilin receptor things are different: "It does not form a channel and it does not forward the stimulus electrically," Kittel says. Instead, it activates intracellular messengers that trigger special signal cascades inside the cell which ultimately also affect the ion channels. According to Kittel, the receptor thus has a modulating effect on stimulus perception like some kind of volume controller.

Collaboration with numerous experts

The study just published is the result of collaborating with specialists from various domains at the University of Würzburg – an aspect which Robert Kittel particularly appreciates.

One of the contributing experts is the plant physiologist Professor Georg Nagel who was one of the scientists who discovered a celebrated technique which became known as "optogenetics". The underlying principle: Nagel characterizes ion channels and enzymes that can be controlled with light. Robert Kittel and Tobias Langenhan used the larvae of Drosophila, the fruit fly, for their experiments which are almost transparent so that the researchers were able to study the functioning of the receptors with simple flashes of light.

The second expert involved was Professor Markus Sauer, head of the Department of Biotechnology and Biophysics at University of Würzburg's Biocenter. With his team, Sauer developed special forms of high-resolution fluorescence microscopy. This "super resolution" microscopy allows imaging cellular structures and molecules with up to tenfold increased resolution compared to conventional optical microscopes. "By using super-resolution microscopy, we were able to pinpoint the position of the cell membrane where the receptor is located," Robert Kittel says.

Dr. Isabella Maiellaro and Professor Esther Asan are also specialists in the field of imaging procedures. By teaming up with Isabella Maiellaro from the Department of Pharmacology, the researchers were able to directly visualize the intracellular receptor signal. Esther Asan, Professor at the Institute of Anatomy and Cell Biology II at the University of Würzburg, also contributed to the success of the study with her expertise in electron microscopy.

Moreover, the project was supported by the extensive experience of Professor Matthias Pawlak at the Institute of Physiology of the University of Würzburg in the field of sensory physiology and Dr Simone Prömel, a pharmacologist at the University of Leipzig. Robert Kittel sees these collaborations as a good example of how modern biotechnological methods can help answer physiological questions.

A very important molecular family

Latrophilin/CIRL is a member of a family of molecules that has more than 30 members in humans: the so-called adhesion GPCRs, a subgroup of the G protein-coupled receptors (GPCRs). Hundreds of them are encoded in the human genome; their importance is underpinned among others by the fact that around half of all prescription drugs target these receptors and help treat common diseases such as high blood pressure, asthma or Parkinson's.

This shows just how important the research results of the scientists from Würzburg and Leipzig are. After all, knowing what is going on inside the cells is a prerequisite for developing a better understanding of pathological processes and designing new therapies. "The cell biology processes are well conserved in terms of evolution," Robert Kittel says. Similar mechanisms are also at work in human cells.

Robert Kittel and Tobias Langenhan are also members of a research unit funded by Deutsche Forschungsgemeinschaft (DFG FOR 2149) which studies the signalling behaviour of adhesion GPCRs. The current study harnesses the good experimental accessibility of Drosophila to bring new technologies into a biomedical context more quickly. This allows basic molecular mechanisms to be described for the first time. These mechanisms are now to be studied in further organisms and physiological contexts in collaboration with other scientists.

Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. Nicole Scholz, Chonglin Guan, Matthias Nieberler, Alexander Grotemeyer, Isabella Maiellaro, Shiqiang Gao, Sebastian Beck, Matthias Pawlak, Markus Sauer, Esther Asan, Sven Rothemund, Jana Winkler, Simone Prömel, Georg Nagel, Tobias Langenhan, Robert J Kittel. eLife 2017;6:e28360. DOI: 10.7554/eLife.28360

Contact

Dr Robert J. Kittel, T: +49 931 31-86046; robert.Kittel@uni-wuerzburg.de

Prof. Tobias Langenhan, T: +49 341 97-22100; tobias.langenhan@uni-leipzig.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>